RESTAURAÇÃO DE MATAS CILIARES SOB LINHAS DE TRANSMISSẤO DE ENERGIA ELÉTRICA

Cláudia Mira Attanasio | Rodrigo Fernando Maule | Ricardo Ribeiro Rodrigues | Gerd Sparovek

RESTAURAÇÃO DE MATAS CILIARES SOB LINHAS DE TRANSMISSÃO DE ENERGIA ELÉTRICA

Cláudia Mira Attanasio
Rodrigo Fernando Maule
Ricardo Ribeiro Rodrigues
Gerd Sparovek

Ficha catalógrafica

Dados Internacionais de Catalogação na Publicação DIVISÃO DE BIBLIOTECA - ESALQ/USP

Restauração de matas ciliares sob linhas de transmissão de energia elétrica / Cláudia Mira Attanasio ... [et al.]. - - Piracicaba: Gráfica e Editora Filipel, 2012. 80 p. : il.

Bibliografia.

1. Matas ciliares - Restauração 2. Energia elétrica I. Attanasio, C. M. II. Maule, R. F. III. Rodrigues, R. R. IV. Sparovek, G. V. Título

CDD 333.75
R436

Trabalhar com qualquer projeto relacionado à infraestrutura no Brasil certamente envolve desafios. Um país com um território extenso, com fauna e flora extremamente, ricas tal qual é o brasileiro, exige preparação e conhecimento para a implantação de projetos e isso se torna particularmente verdadeiro quando se trata do setor elétrico. Dentro desta realidade, os programas de pesquisa e desenvolvimento (P\&D) exercem um papel fundamental, uma vez que é por meio deles que são criadas e viabilizadas importantes inovações que trazem melhorias em diversos aspectos.

O investimento contínuo e responsável realizado pela CTEEP - Companhia de Transmissão de Energia Elétrica Paulista, com os recursos advindos do Programa de P\&D da ANEEL, reforça a importância deste para a companhia, sendo um relevante mecanismo para a geração, experimentação, expansão e gestão de conhecimento empresarial e setorial, focado também nos resultados do negócio de transmissão de energia.

Além do foco em inovação, a preocupação e a atuação voltadas para a utilização sustentável dos recursos naturais também são uma constante nas atividades e processos da CTEEP - o que fica perceptível no sistema estruturado de gestão ambiental, baseado na Norma ABNT NBR ISO 14001:2004, que a companhia adota em suas subestações e na sua política ambiental.

Dentro deste contexto, o projeto de implantação da Blindagem Verde em Áreas de Preservação Permanente, desenvolvido por meio de uma realização conjunta entre a CTEEP, a Escola Superior de Agricultura Luiz de Queiroz - ESALQ/USP e a Agência Paulista de Tecnologia dos Agronegócios - APTA/SAASP, e que é o tema deste livro, foi realizado dentro do Programa de Pesquisa e Desenvolvimento da ANEEL e é um exemplo significativo da busca cada vez mais crescente das empresas do setor elétrico por tecnologias e técnicas que atendam de forma eficaz as necessidades de negócios de energia e também as demandas ambientais.

Em "Restauração de Matas Ciliares sob Linhas de Transmissão de Energia Elétrica" é apresentada uma
visão da construção da inovação em torno de um tema essencialmente ligado à conservação ambiental, o que confere à publicação deste trabalho grande valor. Mais do que um registro do conceito técnico por trás do projeto, o livro apresenta sua efetiva aplicação, reforçando a importância da integração entre teoria e prática nos projetos de pesquisa e desenvolvimento.

Nas páginas a seguir, o leitor poderá saber mais sobre a experiência da implantação da técnica da blindagem verde nas linhas de transmissão, acompanhando o desenvolvimento do projeto e entendendo a sua importância para o setor e para o meio ambiente, além de conhecer os resultados alcançados até o momento. Além disso, oferece um olhar sobre os aspectos naturais que impactam o setor elétrico, trazendo conceitos importantes relacionados aos ecossistemas existentes nas áreas onde há presença de estruturas de torres e linhas de transmissão.

Esta abordagem que une os aspectos ambientais e tecnológicos para exemplificar a aplicação do projeto serve como uma importante referência para o modo como são tratados e apresentados os trabalhos de pesquisa e desenvolvimento.

Programa de Pesquisa e Desenvolvimento - ANEEL

Sumário
Porque o esforço em se preservar as Matas Ciliares?
Funções das Matas Ciliares 3
Restaurar Florestas 7
Grupos ecológicos das espécies de árvores e arbustos das florestas nativas 9
Tipos de Florestas Nativas Ribeirinhas 10
Métodos de Restauração de Matas Ciliares sob
Linhas de Transmissão de Energia 25
Preservar a Floresta - a melhor decisão 37
Recomendações para plantio e manutenção de áreas em restauração sob Linhas de Transmissão de Energia 39
Estudo de Caso 42
Áreas de estudo 45
Ações de restauração de florestas ciliares sob Linhas de Transmissão de Energia nas Áreas Selecionadas 49
Métodos de restauração 50
BOTUCATU 52
JARINU 57
Conclusões 65
Informações úteis 69

Apresentação

Em zonas rurais, a manutenção, através de roçadas e podas drásticas de áreas localizadas sob Linhas de Transmissão de Energia Elétrica (Lts), para se evitar incêndios ou acidentes que provoquem o desligamento do sistema de transmissão é uma constante preocupação das concessionárias e fonte de consumo de recursos expressivos. Nos casos em que ocorrem matas ciliares sob as LTs, a eliminação da vegetação nativa, embora com o nobre intuito de se preservar a transmissão de energia elétrica, imprescindível para a qualidade de vida, frequentemente causa sérios danos ambientais, degradando fragmentos de florestase comprometendo suas funções ecossistêmicas vitais. Esse manual pretende contribuir com propostas que possibilitem garantir a preservação dos recursos naturais, sem afetar a transmissão de energia, além de oferecer às concessionárias, agregação de valor ambiental à suas atividades e diminuição dos custos de manutenção das Áreas de Preservação Permanentes (APPs), sob Linhas de Transmissão de Energia.

Porque o esforço em se preservar as Matas Ciliares? Funções das Matas Ciliares

As matas ciliares estão localizadas ao longo dos rios, córregos e nascentes. São assim denominadas, por terem como função principal proteger os rios e nascentes, como os cílios protegem os nossos olhos. Essas áreas, por serem muito importantes para a preservação ambiental, e consequentemente para a vida no planeta, são protegidas por Lei. O Código Florestal estabelece essas Áreas como de Preservação Permanente (APP). As matas ciliares desempenham as seguintes funções :

- Contribuição ao aumento da quantidade de água armazenada no solo, no lençol freático, em épocas de chuva, colaborando para o aumento do volume de água nos rios e nascentes na estação seca do ano;
- Manutenção da qualidade da água, através:

1. da filtragem superficial de sedimentos (partículas soltas de solo), provenientes de áreas vizinhas, que causariam assoreamento dos rios e nascentes;
2. da diminuição da concentração de herbicidas nos riose
3. da retenção de nutrientes (adubos e corretivos químicos) liberados das áreas agrícolas que chegam aos rios através de seu transporte no escoamento subsuperficial (fluxo de água que escoa sob a superfície do solo), impedindo a contaminação da água (efeito tampão) Essa retenção é promovida pelos microrganismos do solo ou absorvidos pelas raizes da floresta;

- Formação de corredor ecológico, ao longo dos rios, para movimentação dos animais que transportam sementes e frutos da floresta;
- Criação de habitats para animais aquáticos;
- Abastecimento do rio com alimentos para os peixes;
- Favorecimento do equilíbrio da temperatura da água dos rios;
- Manutenção da biodiversidade devido à variedade de ambientes ao longo das matas ciliares;
- Estabilização dos leitos dos rios, sendo que os barrancos dos rios sem vegetação são 30 vezes mais susceptíveis à erosão do que os vegetados;
- Além de tudo isso, contribui com estoque de Carbono, equilíbrio climático e com a beleza cênica da paisagem.
rtancomer

Restaurar Florestas

Quando o objetivo é restaurar matas ciliares, é preciso saber, em primeiro lugar, como eram as floretas, no local, antes de serem destruídas. Restaurar significa garantir a volta dos processos ecológicos e das interações que fazem as florestas se estruturarem, se autoperpetuarem e cumprirem suas funções. Esses processos ecológicos são, por exemplo, a floração, a produção de frutos, a germinação de sementes e o desenvolvimento de plântulas no solo da floresta. É muito importante também a interação da mata com os animais (pássaros, morcegos, roedores, etc..) que garantem a polinização das flores, a dispersão de sementes, etc.

Portanto, é preciso conhecer que tipo de floresta nativa existia na área antes de ser degradada. É necessário saber quais espécies de plantas são adaptadas às condições de clima, solo e umidade do local e conhecer a proporção em que elas ocorrem naturalmente. Se forem plantadas espécies erradas e em quantidades erradas, a mata ciliar provavelmente não será restaurada. Para saber quais as espécies nativas da região, é preciso conhecer quais ocorrem nos fragmentos de mata próximos da área a ser restaurada e providenciar uma lista de espécies que poderão ser plantadas no local em que se pretende restaurar. Para a restauração de matas ciliares sob Linhas de Transmissão de Energia Elétrica é fundamental uma observação a mais: da lista de espécies nativas regionais somente poderão ser plantadas aquelas de porte adequado, isto é, mais baixo, que não provocarão danos às Linhas de Transmissão de Energia Elétrica.

A formação de uma floresta se dá por um processo chamado de SUCESSÃO ECOLÓGICA e sua manutenção ocorre através da chamada Dinâmica de Clareiras. A sucessão ecológica acontece da seguinte maneira: uma floresta se forma lentamente, quando em um local, grupos de espécies vão se sucedendo através do tempo, alterando o ambiente. Primeiro uma área abandonada é ocupada por ervas e arbusto, depois de um certo tempo, desenvolve-se uma capoeirinha com árvores de crescimento rápido, a pleno sol (grupo de espécies iniciais da sucessão ecológica), que estruturam a floresta. Em seguida, forma-se um capoeirão e uma floresta madura dominada por árvores de crescimento lento, que se desenvolveram na sombra (grupo de espécies finais da sucessão) da capoeirinha, consolidando a floresta.

Uma floresta não é só formada por árvores de diferentes espécies, tamanhos e idades, mas também por muitos outros tipos de plantas, de outras formas de vida, que são fundamentais para a manutenção dos animais e para a dinâmica da própria floresta, como por exemplo: arbustos, trepadeiras, bromélias e orquídeas (epífitas), plantas herbáceas (de caule macio ou maleável, normalmente rasteiro), palmeiras, etc.

Muitas vezes, para conseguirmos restaurar realmente uma floresta, para que ela possa chegar a sua fase madura, algumas práticas de MANEJO ADAPTATIVO podem ser necessárias durante o seu desenvolvimento, como por exemplo, plantio para enriquecimento da floresta com árvores de espécies de diferentes comportamentos, com arbustos, orquídeas, bromélias, etc. Assim, ela poderá passar da fase de capoeirinha e capoeirão para a fase de maturação.

Grupos ecológicos das espécies de árvores e arbustos das florestas nativas

Espécies Pioneiras

Crescem a pleno sol

Crescem rápido (5 m em 2 anos)

Vida curta (5 à 15 anos)

Sementes permanecem no solo por muito tempo (anos ou décadas)

Sementes não germinam na sombra

Espécies Secundárias iniciais

Crescem a pleno sol ou na sombra

Crescem mais ou menos rápido (3,5 m em 2 anos)

Vida média (25 a 35 anos)

Sementes permanecem pouco tempo no solo

Sementes germinam na sombra ou na luz

Espécies Clímax

Crescem na sombra

Crescem lentamente
($2,5 \mathrm{~m}$ em 2 anos)

Vida longa (80 a 150 anos)

Sementes permanecem muito pouco tempo no solo

Sementes germinam na sobra

Tipos de Florestas Nativas Ribeirinhas

Florestas Ribeirinhas

O tipo de vegetação nativa que ocupa as áreas ciliares ou ribeirinhas, aquelas que ocorrem ao longo de rios e nascentes, depende das características físicas do local. O nível do lençol freático, isto é, se o solo é encharcado temporariamente ou permanentemente, ou então, seco, é uma das características principais que determina o tipo de vegetação que se desenvolve no local. Também são decisivos o tipo de solo, sua profundidade, fertilidade e propriedades químicas, o relevo, a topografia, etc. Essas características podem ser diferentes ao longo de cada trecho de um rio, portanto, a vegetação nativa de suas margens poderá variar também.

A Floresta Ciliar ou Ribeirinha recebe esse nome pela sua posição na paisagem, isto é, nas margens dos rios e de nascentes. É possível encontrar nessa condição, por exemplo: as Florestas Estacionais Semideciduais Ribeirinhas, as Florestas de Brejo, as Florestas Estacionais Deciduais

En-
 Ribeirinhas, etc., como veremos a seguir.

Floresta Estacional Semidecidual

Esta floresta é caracterizada por apresentar entre 15 e 20 m de altura, com presença de algumas árvores mais altas com até 25 à 30 m , ocorrendo geralmente em solos mais secos. O nome dela é Estacional Semidecidual porque, na estação seca do ano principalmente, se observa a queda das folhas (deciduidade) em 30 a 50% das árvores desta mata. Muitas espécies que aparecem nessa floresta foram exploradas historicamente como Madeiras de Lei, por exemplo, a Peroba (Aspidosperma polyneuron), o Cedro (Cedrela fissilis), o Pau Marfim (Balfourodendron riedellianum), o Jatobá (Hymenaea courbari), o Guarantã (Esenbeckia leiocarpa), os Jequitibás Branco e Vermelho (Cariniana spp.), etc.

No sub-dossel e sub-bosque podem aparecer os Catiguás (Trichilia spp.), os Camboatãs (Cupania vernalis e Matayba elaeagnoides), os Sete Capotes (Campomanesia spp.), os Branquilhos (Sebastiana spp. e Actnostemon spp.), os Chupa Ferro (Metrodorea nigra), etc.

A Floresta Estacional Semidecidual Ribeirinha aparece ao longo de rios, pode estar sujeita à ocorrência, em algum período do ano, de enchentes temporárias ou então, pode não estar sujeita à presença da água, com solo seco, depende da altura das margens e dos barrancos dos rios. Isso é muito importante para a restauração das matas ciliares. Algumas espécies encontradas nesse tipo de floresta são, além das já citadas: Peito de Pomba (Tapirira guianensis), Pessegueiro Bravo (Prunus myrtifolia), Guaritá (Astronium graveolens), Copaíba (Copaifera langsdorffii), Mamica-de-Porca (Zanthoxylum rhoifolium), Maria-Mole (Dendropanax cuneatum), Guaçatonga (Casearia sylvestris), Pau-Espeto (Casearia gossypiosperma), etc.

Floresta de Brejo (ou Paludosa)

São chamadas de Florestas de Brejo em função de sua característica principal e seletiva de permanente encharcamento do solo, por isso apresentam características próprias da vegetação, que são diferentes das florestas em áreas secas ou com permanência apenas temporária da água. Possuem distribuição na paisagem de forma naturalmente fragmentada, pois ocorrem apenas em solos muito úmidos, com forte influência da água. No interior desse tipo de floresta a água flui em pequenos canais no solo deixando-o sempre em condições de encharcamento e a vegetação ocorre em pequenas elevações do terreno (montículos) entre esses canais. Apresentam árvores e arbustos que variam de 11 a 16 metros de altura. Têm uma diversidade de plantas menor que as demais florestas, em função da presença quase permanente da água no solo, agindo como fator limitante para a ocorrência de outras espécies de árvores e arbustos. É formada por um grupo bem definido de espécies, típicas desses locais.

As espécies de árvores mais comuns nestas formações são: o Guanandi (Calophyllum brasiliense), o Almiscar (Protium almecega), a Pinha do Brejo (Magnolia ovata), o Marinheiro (Guarea kunthiana), a Embaúba (Cecropia pachystachya), o Palmito Doce (Euterpe edulis), a Figueira do Brejo (Ficus insipida), Maria Mole (Dendropanax cuneatum), etc. No sub-bosque, como espécie indicadora temos a palmeira Geonoma brevispatha, e nas bordas um arbusto muito comum é a Miconia chamissois.

Mata Atlântica (ou Floresta Ombrofila Densa)

Essa floresta ocupa as encostas do litoral, com destaque para a Serra do Mar, onde chove muito e é comum a presença de neblina. É uma floresta exuberante, fechada e densa, sempre verde e seu interior é bastante sombreado e úmido. Essa floresta em área ribeirinha, ocorre no entorno de rios de corredeira. O solo onde aparece não é muito fértil, mas nele existe uma camada de restos vegetais (ramos, folhas, flores, frutos e sementes) que se decompõem e fornecem nutrientes para as plantas. Certamente é uma das florestas com maior biodiversidade do planeta. Possui árvores de até 35 metros de altura. Dentre as espécies são comuns: os Jequitibás (Cariniana spp.), os Tapiás (Alchornea spp.), o Palmito Doce (Euterpe edulis), as Figueiras (Ficus spp.), as Canelas (Ocotea spp.), os Samambaia-açus, como os Xaxins e muitas outras. Nessa floresta aparecem em abundância as bromélias, orquídeas, samambaias, musgos, cipós, palmeiras, etc.

Floresta de Restinga

Essas florestas ocorrem na planície litorânea, em solos arenosos, após as dunas ou manguezais e vão até as encostas da Serra do Mar. Diferem entre e si, podem ser mais abertas ou mais fechadas e nelas ocorrem uma grande quantidade de bromélias, orquídeas e cipós. Nas depressões da planície, em áreas permanentemente encharcadas, ocorrem os Caixetais (Tabebuia cassinoides) ou Guanandiais (Calophyllun brasiliense), que são florestas quase homogêneas, formadas por pouquíssimas espécies de árvores.

Floresta Estacional Decidual

As Florestas Estacionais Deciduais não ocorrem comumente em áreas ciliares, mas podem aparecer próximo de rios, em barrancos altos de solos rasos, sendo assim denominadas de Florestas Estacionais Deciduais Ribeirinhas.

São as florestas onde quase todas as plantas perdem as folhas na época seca do ano. Isso faz com que ocorra alto nível de luz no seu interior, tornando o ambiente mais árido. Aparecem em solos muito rasos, com afloramento de rochas, rico em nutrientes, mas com baixa capacidade de armazenar água. Por isso, apresentam um número menor de espécies de árvores e arbustos, sendo algumas delas a Aroeira-Verdadeira (Myracrodruon urundeuva), o Capitão (Terminalia spp.), os Ipês (Tabebuia spp.), os Angicos Brancos (Anadenanthera spp.), o Açoita Cavalo (Luehea spp.), o Mandacaru (Cereus spp.) e outras. Bromélias e cactos são frequentes nessas matas.

Cerradão

O Cerradão raramente ocorre em áreas ciliares, entretanto pode aparecer próximo de rios, em barrancos altos com solos profundos, sendo nesse caso chamado de Cerradão Ribeirinho.

Ocorre em solos profundos que podem apresentar altos teores de Alumínio, com pouca capacidade de retenção de água. São formados de árvores de 10 a 16 m , de copas pequenas, folhas com grossas cutículas (camada de cêra sobre a folha) e troncos com cascas grossas. Muitas espécies perdem as folhas nas épocas mais secas do ano. Ao contrário de outras florestas, o Cerradão tem o seu interior bastante iluminado porque as copas de suas árvores permitem a passagem de luz. As espécies principais desse tipo de vegetação são o Angico Vermelho (Anadenantheramacrocarpa), o Jatobá (Hymenaea courbaril), o Pau D'Olho (Copaifera langsdorffiia), Farinha Seca (Albizia niopoides), Amendoim (Pterogine nitens), a Sucupira-Preta (Bowdichia virgilioides), etc.

A aparência não é igual a do cerrado típico, com árvores bem menores, em geral retorcidas e mais ou menos espaçadas, não chegando a formar uma floresta. As espécies que ocorrem em cerrado típico, são: Barbatimão (Stryphnodendron barbatiman), Pequi (Caryocar brasiliense), Sucupira Preta (Bowdichia virgilioides), Araticum (Annona crassiflora), etc.

Métodos de Restauração de Matas Ciliares sob Linhas de Transmissão de Energia

A seguir, veremos que é possível restaurar ou preservar florestas sob Linhas de Transmissão de Energia. São várias as ações de restauração, dependendo do uso atual da área a ser restaurada, do seu histórico de degradação e das características da paisagem da região. Algumas dessas ações estão apresentadas a seguir:

Condução da regeneração natural

A regeneração natural é a ocupação de uma área degradada através da germinação de sementes de espécies nativas, que já existiam no solo ou que foram trazidas por animais ou pelo vento. Com o passar do tempo, vai ocorrendo o desenvolvimento dessas formas jovens (plântulas) de árvores e arbustos até se tornarem adultas e formarem uma capoeira. A regeneração natural pode ocorrer também através da brotação de troncos e raízes de espécies nativas queimadas ou cortadas, presentes na área degradada.

Essa ação é indicada para locais que apresentam elevado potencial de auto recuperação, isto é, onde se pode observar o início do desenvolvimento de plantas de espécies nativas (regenerantes). Pode ser recomendada também para áreas próximas de fragmentos de floresta, que estavam sendo mantidas com roçadas constantes ou onde ocorreu corte raso da floresta.

Dessa forma, o objetivo da condução da regeneração natural é cuidar para que essas espécies nativas regenerantes formem (estruturem) uma floresta num certo período e com baixo custo.

Deve se iniciar com o isolamento da área e a retirada dos fatores que causaram a degradação, como por exemplo, o fogo, a presença do gado, roçadas constantes, etc. O próximo passo é o controle das espécies invasoras como braquiária, colonião, samambaias, etc.

É preciso conduzir o que está regenerando, com o mesmo tratamento dado às mudas plantadas, realizando o coroamento (2 ou 3 vezes por ano) e o estaqueamento, o que favorecerá a formação de uma capoeira e o fechamento gradativo da área. Quando isso acontecer, o sombreamento impedirá o desenvolvimento intenso de braquiárias, colonião, etc. no local. Para acelerar a formação de uma capoeira, é indicada a adubação.

A regeneração natural é importante pois tem custo reduzido e grande possibilidade de sucesso, além de preservar a diversidade biológica e genética. Periodicamente, é preciso realizar uma seleção e a eliminação ou desbaste das espécies nativas regenerantes de porte alto que possam oferecer risco à manutenção das Linhas de Transmissão de Energia.

Pode ser recomendado também, futuramente, o enriquecimento do fragmento florestal com espécies de arbustos e árvores de baixo porte, ou com outras formas de vida, como orquídeas, trepadeiras, etc.

Atenção, essas ações devem ser autorizadas pelo órgão ambiental competente.
Vale destacar duas características comuns na regeneração natural: a baixa diversidade de espécies regenerantes e a ocupação desigual da área a ser restaurada. Dessa forma, duas próximas ações podem ser necessárias.

Adensamento de espécies

A ação de adensamento, prática de manejo adaptativo para que a floresta consiga alcançar sua fase madura, é recomendada para locais em que está presente a capoeira e nela ocorre boa diversidade de árvores e arbustos, entretanto é formada por poucas plantas. Isso pode acontecer em áreas onde a regeneração natural ocorreu de forma irregular, deixando espaços vazios que precisam ser preenchidos com o plantio de mudas, por isso o nome adensamento. Nesse caso, é preciso fazer o plantio de mudas das mesmas espécies já existem no local ou de espécies nativas da região, que cresçam rapidamente, tenham copas grandes para recobrirem rapidamente a área e que sejam, nesse caso, de porte baixo para não interferir na proteção das LTs. O espaçamento que pode ser usado para o adensamento é o de 3 m ou 2 m entre linhas e 2 metros entre plantas.

Enriquecimento de espécies

Outra ação é o enriquecimento, que é recomendada para locais onde existe uma capoeira ou floresta degradada, mas com baixa diversidade de espécies de árvores e arbustos. Essa ação consiste em reintroduzir na área, através do plantio de mudas, as espécies que existiam ali, mas foram eliminadas por diversos fatores de impacto. Essas espécies nativas regionais a serem plantadas, como ação de
enriquecimento, são principalmente de crescimento lento, que se desenvolvem em locais sombreados, do final da sucessão ecológica, muitas delas chamadas Madeira de Lei que historicamente foram exploradas.

Importante também destacar que devem ser de porte baixo. O enriquecimento de uma capoeira ou floresta degradada pode ser feito também com orquídeas, bromélias, trepadeiras, herbáceas, etc., que vão garantir a perpetuação da floresta restaurada.

As ações de adensamento e enriquecimento podem também ser indicadas para áreas onde se fez a eliminação seletiva de árvores de porte alto para a proteção das Linhas de Transmissão de Energia provocando o surgimento de clareiras, mas apenas se nelas a regeneração natural de espécies de porte baixo não foi suficiente para fechar seus espaços vazios.

Plantio total na área a ser restaurada

Esse método é recomendado para áreas muito degradadas, sem potencial para se auto recuperarem, diferentes daquelas descritas nos itens anteriores. São locais onde a capoeira ou floresta não existem mais e estão distantes de fragmentos de floresta.

Antes de qualquer ação de restauração, é essencial conhecer qual o tipo de floresta que originalmente ocupava o local, evitando erros na escolha de espécies nativas de árvores e arbustos.

No plantio em área total são realizadas combinações das espécies nativas de diferentes comportamentos. Sugere-se a separação das mudas em dois Grupos Funcionais: Grupo de Recobrimento e Grupo de Diversidade.

Para uma espécie pertencer ao grupo de recobrimento ela deve ter rápido crescimento e a capacidade de formar copa densa e frondosa, sendo assim uma eficiente sombreadora do solo. O grupo de recobrimento tem como função promover rápido recobrimento da área, formando (estruturando) uma capoeira, e assim criando um ambiente favorável ao desenvolvimento das espécies do grupo de diversidade, que crescem na sombra, e ao mesmo tempo desfavorecendo o desenvolvimento de espécies invasoras, como a braquiária e o colonião, que crescem a pleno sol. Por isso, a distribuição regular na área das mudas do grupo de recobrimento, para formar uma cobertura contínua, é um dos fatores que pode garantir o sucesso da restauração.

No grupo de diversidade estão todas as demais espécies nativas regionais, isto é, aquelas que não apresentam capacidade de recobrimento rápido da área e que vão se desenvolver lentamente no interior da capoeira formada pelas espécies do grupo de recobrimento. As espécies do grupo de diversidade contribuirão para a elevada riqueza dos plantios. Elas são fundamentais para garantir a perpetuação da área plantada, já que são as espécies desse grupo que irão gradualmente substituir as do grupo de recobrimento quando essas morrerem, ocupando definitivamente a área. Nesse grupo podem ser incluídas, além das árvores e arbustos, as bromélias, as orquídeas, as trepadeiras, etc.

As espécies do grupo de recobrimento devem ser distribuídas de forma alternada às espécies do grupo de diversidade na linha de plantio, no campo. O espaçamento de plantio mais usado é o de 3 m entre linhas e 2 m entre plantas.

Plantio da mudas na área degradada

Caso exista bom fragmento de floresta próximo (no máximo à 100 m), é possível plantar somente espécies de recobrimento, de preferência com frutos carnosos, atrativas da fauna, para facilitar a chegada de propágulos (sementes, brotos, etc.) das espécies do grupo de diversidade, através de animais, e também do vento, etc. A chegada de propágulos das espécies de diversidade deve ser monitorada a partir do segundo ano após o plantio das espécies do grupo de recobrimento, pois caso não aconteça será necessária uma ação de enriquecimento na área.

Importante:

Para plantio sob Linhas de Transmissão de Energia, as espécies dos grupos de preenchimento e de diversidade devem ser selecionadas de acordo com o seu porte, sua altura, para não causar danos às Lts.

Número de mudas por espécies nativas regionais de porte baixo e proporção de espécies entre os grupos: no plantio, considera-se que metade das mudas utilizadas deve conter entre 10-15 espécies do grupo de recobrimento e a outra metade das mudas devem conter o máximo possível de espécies do grupo da diversidade sendo sugerido o uso de 70 a 80 espécies.

É preciso evitar o plantio de muitas mudas de poucas espécies e colocar indivíduos da mesma espécie muito próximos uns dos outros no campo.

Exemplo:

Plantio de 1.000 mudas

500 mudas do Grupo de Recobrimento $\rightarrow 10$ espécies $\rightarrow 50$ mudas por espécie 500 mudas do Grupo de Diversidade $\rightarrow 70$ espécies $\rightarrow 7-8$ mudas por espécie.

Outro método promissor de restauração de florestas nativas

Transferência de plântulas, resgatadas em fragmento de floresta preservada ou em talhões de eucalipto, para plantio em área degradada sob Linhas de Transmissão de Energia.

Essa técnica consiste em retirar as plântulas (árvores e arbustos muito jovens) de espécies nativas regionais que germinam naturalmente dentro ou no entorno de fragmentos florestais ou ainda dentro de talhões de eucalipto ou outras áreas e levá-las para adaptação em viveiro para posterior utilização em áreas a serem restauradas. Na prática é recomendado que se colete plântulas com no máximo 40 cm de altura (entre 5 cm e 30 cm).

Em florestas, esse método é recomendado principalmente para casos de empreendimentos (mineração, construção de estradas e até construção das torres e Linhas de Transmissão de Energia, etc.) em que matas precisarão ser desmatadas com autorização dos órgãos ambientais. Essa situação provoca perda de sementes e plântulas presentes no interior desses fragmentos florestais. O resgate desse material e transferência para viveiros e posteriormente para áreas a serem restauradas é um método que está sendo bastante indicado pois garante a obtenção de maior diversidade de espécies, obtenção de mudas de espécies difíceis de serem produzidas por sementes, baixo custo e maior rapidez na produção das mudas.

Essa ação de restauração pode ser muito promissora para as Concessionárias de Energia Elétrica pois possibilita a obtenção de maior diversidade de espécies para os viveiristas e, portanto, maior probabilidade
de se obter mudas de espécies nativas regionais de baixo e médio portes, que apresentam normalmente dificuldade de serem encontradas em viveiros. Entretanto, não deve ser usado quando as plântulas se encontram dentro de fragmentos naturais, que não serão eliminados, evitando a degradação dos mesmos.

Para que esse método possa ser utilizado pelas concessionárias, seria interessante um órgão que fizesse a integração de quem precisa restaurar Áreas de Preservação Permanente (APP) degradadas com quem vai precisar cortar a floresta para a implantação de grandes empreendimentos, com autorização das autoridades competentes.

Preservar a Floresta - a melhor decisão

Em Áreas de Preservação Permanente sob Linhas de Transmissão de Energia onde já ocorre a floresta, o corte raso ou a poda drástica de toda a floresta, embora em muitos casos pareça mais seguro e menos oneroso, provoca um enorme desequilíbrio ambiental que favorece o crescimento, rebrota e germinação das espécies nativas de rápido crescimento (muitas de porte alto) e a invasão da área por gramíneas (braquiárias, colonião, etc.), ou outras espécies exóticas muito agressivas (por exemplo, bambuzinho, etc.) e que podem pegar fogo com facilidade em épocas secas. Portanto, o que parece ser uma ação positiva para proteção imediata das LTs é uma prática que promove, a curto e médio prazo, uma situação de difícil controle, exigente em manutenção intensa e contínuo monitoramento da LT, de elevado valor em mão de obra e em recursos financeiros. Sem contar, o dano ambiental, isto é, o comprometimento dos serviços prestados pela floresta preservada, muitas vezes, irreversível e mal visto pela sociedade, tornando-se um marketing negativo para a empresa do setor elétrico.

A recomendação técnica que se mostra mais eficiente para os casos de ocorrência de fragmentos florestais sob as Linhas de Transmissão de Energia são as podas altas ou a eliminação apenas das árvores com altura que ofereça real risco à integridade e proteção das LTs. A retirada seletiva das árvores, seguindo técnicas de baixo impacto, acarretará na abertura de pequenas clareiras, que não causarão desequilíbrio grave na floresta.

Nessas clareiras, ações de adensamento ou enriquecimento poderão ser realizadas com espécies nativas regionais de arbustos e árvores de porte adequado, caso nelas não ocorra a regeneração natural dessas espécies.

É bom destacar que essas iniciativas deverão sempre ser desempenhadas com a autorização dos órgãos ambientais responsáveis.

O corte raso da mata ciliar desencadeou a ocupação desequilibrada da área por espécies nativas, que se desenvolvem a pleno sol e de porte alto - Angico (Anadenanthera colubrina) (A) e de espécies invasoras agressivas - bambuzinho (B)

Recomendações para plantio e manutenção de áreas em restauração sob Linhas de Transmissão de Energia

- Retirada de fatores que causam a degradação, como por exemplo: presença de gado, de sulcos de erosão, a descarga de águas da chuva, a retirada de madeira para lenha ou cerca, a drenagem de áreas alagadas para ocupação agrícola, roçadas constantes, entre outros;
- Realizar, antes do plantio e durante a manutenção da área, a eliminação de gramíneas (braquiárias, colonião, etc.) e de outras espécies invasoras agressivas (bambú, Leucena, samambaias, etc.);
- O preparo do solo deve ser feito de acordo com as condições locais, mas é sempre melhor evitar o
 revolvimento intensivo (grades, arados, etc.), realizando apenas uma roçada para não deixar o solo descoberto. Em seguida, fazer os sulcos, que não devem ser muito profundos, para evitar o desbarrancamento das laterais durante as chuvas fortes, e covear, ou, simplesmente, covear e plantar. É recomendável o uso de subsolador de uma haste;
- A retirada das mudas dos saquinhos ou tubetes deve ser realizada com cuidado para evitar a quebra do torrão;
- No plantio, o colo da muda (zona entre o caule e a raiz) deve ficar no mesmo nível da superfície do terreno;
- Embora o plantio deva ser realizado sempre em época chuvosa, se houver pouca chuva ou se for realizado fora do período ideal, irrigar sempre que houver necessidade, principalmente durante os primeiros meses. No plantio, pode-se optar pela utilização de hidrogel, substância que retém a umidade ao redor das mudas por um tempo maior;
- Estaquear as mudas após o plantio (tutoramento);
- Realizar calagem e adubação, com base em análise do solo ou em recomendações técnicas da região, para que as mudas cresçam mais rapidamente e resistam melhor às adversidades;
- Controlar as formigas;
- Proceder ao replantio quando a mortalidade for superior à 5%, após 60 dias do plantio;
- As roçadas entre linhas e o coroamento, que consiste na remoção (manual) ou controle (químico) de toda e qualquer vegetação em um raio de no mínimo $20-30 \mathrm{~cm}$ ao redor da muda ou indivíduo regenerante, devem ser realizados frequentemente, dependendo das condições da área.

Importante

Se possível, é recomendável também às Concessionárias de Energia Elétrica a formação de viveiros para a produção de mudas de espécies nativas de diversos tipos florestais, especialmente de porte baixo ou médio. Muitas vezes, essas espécies demandadas pelas concessionárias são difíceis de serem encontradas em viveiros comerciais comuns.

Estudo de Caso

PROJETO: "Identificação de Áreas Potenciais para Blindagem verde, como alternativa à

 roçada em áreas sem aptidão agrícola e de Preservação Permanente (APP), sob as LTs"Concessionária de Energia Elétrica responsável:
CTEEP (Companhia de Transmissão de Energia Elétrica Paulista).

Objetivos

Desenvolver técnica que permita a ocupação das Áreas de Preservação Permanentes (APPs) com espécies de arbustos e árvores nativas regionais de baixo porte que reduzam ou minimizem a manutenção por poda ou roçada, diminua os gastos de recursos humanos e impeçam a degradação ambiental.

Equipe de pesquisadores

Gerd Sparovek (ESALQ/USP), Ricardo Ribeiro Rodrigues (ESALQ/USP), Rodrigo Fernando Maule (ESALQ/USP), Cláudia Mira Attanasio (APTA/SAA-SP), Alberto Barretto (ESALQ/USP), André Gustavo Nave (ESALQ/USP).

Seleção de áreas

A seleção de Áreas de Preservação Permante (APPs) para instalação dos experimentos seguiu uma série de critérios de modo que o resultado dos experimentos tivesse maior abrangência possível para possibilitar a replicação dentro do Estado de São Paulo. Várias áreas foram indicadas pelos técnicos da CTEEP, selecionadas pela equipe de trabalho e aprovadas pelas Regionais da CTEEP. Foram observados os seguintes itens:

- ocorrência de problemas de manutenção com roçada manual;
- seleção de diferentes tipos de solo e clima segundo as informações do zoneamento de clima e solo produzido na primeira fase do Projeto;
- importância ambiental das áreas de implantação;
- autorização e colaboração dos proprietários da área selecionada.

Levando esses pontos em consideração foi conduzido um trabalho de pré seleção com apoio logístico das regionais da CTEEP de Bauru e Cabreúva que resultou na negociação com diversos proprietários de trechos de interesse. No final desse processo foram selecionadas duas áreas, uma no município de Botucatu e outra no município de Jarinu.

Áreas de estudo

Área 1

Município

Botucatu ($22^{\circ} 57^{\prime} 34^{\prime \prime}$ Se $48^{\circ} 31^{\prime} 20^{\prime \prime}$ W);

- 830 m de altitude;
- LT BAU-OES TORRES VÃO 251-252;
- Clima temperado úmido com verão quente (Cfa).

Áreas selecionadas

- Áreas de Preservação Permanente (APPs): a área A mede aproximadamente $6.800 \mathrm{~m}^{2} \mathrm{e}$ a área B mede $3.800 \mathrm{~m}^{2}$;
- Estas áreas estavam inicialmente sem cultivo agrícola, com roçadas periódicas feitas pela empresa ISACTEEP, para controle de gramíneas invasoras (braquiárias, colonião, etc.) e samambaias;
- Solos argilosos, profundos, bem drenados e com fertilidade baixa (Latossolo Vermelho e Argissolo Vermelho);
- Os tipos de vegetação que são encontrados nas região são: Floresta Estacional Semidecidual, Florestas Ripárias, Cerradão e Cerrado.

Imagem mostrando as Áreas de Preservação Permanente A e B selecionadas para restauração de floresta, com espécies nativas regionais de baixo porte, sob Linhas de Transmissão de Energia Elétrica, em Botucatu (SP). Tanto a Área A quanto a Área B estavam inicialmente sem cultivo agrícola, mantidas com roçadas periódicas para controle de braquiárias, colonião e samambaias. Há fragmento florestal no entorno que poderá fornecer sementes para a regeneração natural da floresta

Área 2

Município

- Jarinu ($23006^{\prime} 06^{\prime \prime}$ S e 460 43' $38^{\prime \prime}$ O);
- 755 m de altitude;
- LTBOJ-TAU, Torres vão T227-T228;
- Clima tropical de altitude (cwb).

Áreas selecionadas

- Áreas de Preservação Permanente (APPs): a área A mede aproximadamente $2.200 \mathrm{~m}^{2}$, a área B mede $4.800 \mathrm{~m}^{2} \mathrm{e}$ a área $\mathrm{C}, 5.000 \mathrm{~m}^{2}$;
- A Área A estava ocupada inicialmente com cobertura de gramíneas invasoras (Capim Napier, Braquiária e Capim Gordura) e bambu de difícil erradicação. As Áreas BeC apresentavam corte raso da mata ciliar realizado havia poucas semanas pela concessionária, visando evitar que as árvores mais altas atingissem as Linhas de Transmissão e um período maior entre as ações de manutenção. Entretanto, observava-se a regeneração natural favorecida pelo fragmento florestal do entorno, banco de sementes no solo, brotação de troncos e raízes, germinação de sementes e desenvolvimento de plântulas;
- Solo resultante de sedimentos aluviais (Neossolo Flúvico);
- A formação florestal da região é a Floresta Estacional Semidecidua Montana.

Ações de restauração de florestas ciliares sob Linhas de Transmissão de Energia nas Áreas Selecionadas

Levantamentos

Foram realizados levantamentos em fragmentos florestais próximos de cada Área de Preservação Permanente (APPs) sob Linhas de Transmissão de Energia, onde estão sendo implementadas ações de restauração, tanto em Jarinu, quanto em Botucatu, para a identificação das espécies de árvores e arbustos nativos regionais. Além disso, também foram feitas consultas à bibliografia especializada sobre espécies nativas já registradas na região. Em seguida, foi elaborada uma lista de espécies baseada nos levantamentos florísticos realizados e na bibliografia consultada para a Região de Botucatu e de Jarinu. A partir dessa lista de espécies regionais foram selecionadas as espécies nativas regionais de arbustos e árvores de baixo porte, para plantio sob Linhas de Energia em cada área.

Métodos de restauração

Botucatu

Áreas AeB

Implantação de plantio de mudas de espécies nativas regionais de arbustos e árvores de porte baixo em área total e condução da regeneração natural induzida por sementes oriundas de fragmento do entorno ou banco de sementes do solo. Futuramente, quando for possível identificar as espécies da regeneração natural de árvores, arbustos e herbáceas nativas e consequentemente seu porte, deverá ser realizada uma seleção para a eliminação das árvores de porte alto e médio e a condução apenas daquelas de porte baixo e arbustos.

Jarinu

Área A

Foi realizado o plantio de mudas de espécies nativas regionais de porte baixo em área total e controle sistemático e intensivo do bambuzinho em desequilíbrio e de gramíneas invasoras.

Área B

Está sendo efetuada a condução da regeneração natural da vegetação nativa e realizado o
enriquecimento com mudas de espécies nativas regionais de porte baixo. As espécies regenerantes oriundas do banco de sementes no solo e de sementes vindas das florestas do entorno, serão identificados. Aquelas de porte médio e alto serão eliminadas definitivamente e mantidas e monitoradas apenas as de porte baixo, adequadas para restauração de APPs sob Linhas de Energia.

Área C

Houve desenvolvimento em desequilíbrio de uma espécie nativa, de crescimento rápido em áreas abertas (inicial da sucessão ecológica), de porte alto, o Angico (Anadenanthera colubrina), que dominou toda a área. Essa espécies está sendo controlada para a implementação das ações de restauração semelhantes às realizadas na Área B.

IMPORTANTE: As práticas de restauração florestal a serem desenvolvidas nas Áreas $\mathrm{A}, \mathrm{B} \mathrm{e} \mathrm{C} \mathrm{serão} \mathrm{de} \mathrm{difícil}$ implantação e condução devido ao imenso desequilíbrio ambiental provocado pelo corte raso da floresta. O crescimento de bambus e espécies invasoras agressivas (braquiárias, colonião, etc.), assim como, a ocupação total da Área C com uma única espécie nativa de crescimento rápido (o Angico), tornam essas áreas de complexa e onerosa manutenção pela concessionária e de difícil desenvolvimento das ações de restauração.

BOTUCATU

Tipo de vegetação da floresta do entorno: Cerradão (Savana Florestada)
Lista florística: 193 espécies de árvores e arbustos foram identificados nos levantamentos, sendo 135 de porte menor de 9 metros de altura (as listas de espécies podem ser encontradas no artigo disponível no endereço:
http://www.aptaregional.sp.gov.br/index.php/pesquisa-a-tecnologia, de 22/12/2011).
Área de plantio: 1 ha
Data do Plantio: 27/10 à 01/11/2010
Número de mudas plantadas: 1.648
Número de espécies plantadas: 47
Data da coleta de dados do primeiro monitoramento (Ponto 0): 07/12/2010
Dados coletados: sobrevivência, altura total (cm) e diâmetro da copa (cm).
Número de mudas mortas e replantadas 1 mês após o plantio: 11
Recobrimento +30 Diversidade

Preparo das Áreas AeB para plantio das espécies de árvores e arbustos nativos regionais de porte baixo para a restauração da floresta sob Linhas de Transmissão de Energia em Botucatu (SP)

Separação das mudas, de 47 espécies nativas regionais de porte baixo, em Grupos de Recobrimento e Diversidade para plantio sob Linhas de Transmissão de Energia em Botucatu (SP)

Espécies nativas regionais de porte baixo, dos Grupos de Recobrimento e Diversidade, disposta alternadamente nas linhas de plantio, na Área A, em Botucatu (SP). Execução de práticas de controle de braquiária e samambaia, coroamento e roçada nas entrelinhas

JARINU

Tipo de vegetação do fragmento do entorno: Floresta Estacional Semidecidua

Montana

Lista florística: 267 espécies de árvores e arbustos foram identificadas nos
levantamentos, sendo 142 de porte menor de 9 metros de altura (as listas de espécies podem ser encontradas no artigo disponível no endereço: http://www.aptaregional.sp.gov.br/index.php/pesquisa-a-tecnologia, de 22/12/2011).
Área de plantio: 0,7 ha
Data do Plantio: 01à 02/12/2010
Número de mudas plantadas: 1.350
Número de espécies plantadas: 50
Data da coleta de dados do primeiro monitoramento: 09/12/2010
Dados coletados: sobrevivência, altura total (cm) e diâmetro da copa (cm).
Número de mudas mortas e replantadas 7 dias após o plantio (ponto 0): 8
Recobrimento +13 Diversidade

Área B, onde ocorreu o corte raso da Floresta Ribeirinha havia poucas semanas, sob Linha de Transmissão de Energia, em Jarinu (SP)

Preparo do terreno e controle das plantas invasoras (bambu, braquiária, etc.) para o plantio de espécies nativas regionais de porte baixo, na área A sob Linhas de Transmissão de Energia, em Jarinu (SP)

Plantio de mudas de espécies nativas regionais de porte baixo (Recobrimento e Diversidade) na Área A, em Jarinu (SP)

Plantio de mudas e condução da regeneração natural nas Áreas Be C, em Jarinu (SP)

Observação

Os módulos em faixa de servidão foram delimitados pela largura e pelo comprimento da faixa de servidão. A faixa de servidão apresentou largura variável, embora não ultrapassando 30 m de largura (15 m para cada lado a partir do centro das torres) e não inferior a 12 m .

Importante

Qualquer ação a ser desenvolvida em áreas sob Linhas de Transmissão de Energia Elétrica e faixas de servidão, incluindo a restauração florestal, devem ser executadas pelas próprias concessionárias responsáveis pela rede ou por empresas autorizadas. Qualquer pessoa interessada em plantar árvores de porte baixo e arbustos para restauração florestal de APPs sob Linhas de Energia, ou em realizar outras ações com esse fim, deve entrar em contato com a concessionária responsável para uma consulta técnica, evitando que a transmissão de energia seja colocada em risco.

Conclusões

Restauração de matas ciliares com espécies nativas regionais de baixo porte, através de ações descritas nesse manual ou outras, deve ser considerada como uma das possibilidades de se manter a vegetação nativa sob as Linhas de Transmissão de Energia Elétrica. Entretanto a melhor atitude é, sem dúvida, preservar a floresta, se houver, procedendo à eliminação apenas das árvores de porte alto, que ofereçam real risco à integridade das LTs. Dessa forma, não haverá desequilíbrio ambiental intenso, que provoca aumento de custos de manutenção e degradação dos recursos naturais. Além disso, é possível enriquecer ou adensar a mata ciliar existente se estiver muito degradada e sem potencial de regeneração natural.

Os modelos de preservação e restauração de Áreas de Preservação Permanente (APPs) sob Linhas de Transmissão de Energia são inovadores, atendem à atual busca pelo Desenvolvimento Sustentável, isto é, são economicamente viáveis e ambientalmente seguros. Preserva, não apenas as LTs, imprescindíveis para a qualidade de vida, mas também a natureza e seus serviços ecossistêmicos vitais e poderão ser divulgados para Prefeituras, Concessionárias, ONG's, técnicos do Ministério Público e Universidades.

A importância da conservação das Áreas de Preservação Permanente está diretamente relacionada aos serviços ecossistêmicos que realizam, vitais para a vida humana, como a preservação da qualidade e quantidade de água e da biodiversidade. Em Jarinu, apesar do corte raso que destruiu um trecho da floresta, colocando em risco esses recursos ambientais, ainda podemos perceber o potencial de regeneração natural da floresta e de sobrevivência da fauna, que apesar de terem parte do seu habitat devastado, ainda estão conseguindo resistir na área. A preservação da floresta está intimamente relacionada com a presença da fauna na área e vice-versa. Por isso a relevância do estudo que está sendo desenvolvido com o apoio da CTEEP, da ESALQ-USP e da APTA/SAA-SP, com o objetivo de compatibilizar o fornecimento de energia elétrica e a preservação da natureza.

Informações úteis

Sites

- CTEEP - Companhia de Transmissão de Energia Elétrica Paulista - www.cteep.com.br
- APTA - Agência Paulista de Tecnologia dos Agronegócios - www.apta.sp.gov.br
- ESALQ-Escola Superior de Agricultura "Luiz de Queiroz" - www.esalq.usp.br
- LERF - Laboratório de Ecologia e Restauração Florestal (ESALQ/USP) - www.lerf.esalq.usp.br
- SMA/SP - Secretaria do Meio Ambiente do Estado de São Paulo - www.ambiente.sp.gov.br

Autores

Cláudia Mira Attanasio

Doutora em Recursos Florestais - USP | Pesquisadora Científica \| Agência Paulista de Tecnologia dos Agronegócios APTA (SAA/SP) | Tel: 19-3421.5196 | claudiattanasio@apta.sp.gov.br

Rodrigo Fernando Maule

Doutorando em Ecologia Aplicada | Laboratório de Geoprocessamento - LSN (ESALQ/USP) | rodrigo_maule@terra.com.br

Ricardo Ribeiro Rodrigues

Professor Titular | Laboratório de Ecologia e Restauração Florestal - LERF/LCB (ESALQ/USP) | Tel: 19-3429.4431 | rrresalq@usp.br

Gerd Sparovek

Professor titular | Laboratório de Geoprocessamento - LSN (ESALQ/USP) | gerd@usp.br

Gerentes de projeto

Marcus Rocha Salemme

MBA em Adm.Peq.e Med.Empresas - UNIANCHIETA; Graduado Engenharia Elétrica - Universidade de Bauru; Coordenador de Manutenção de LTs do Departamento Regional Cabreúva-OC; Tel. (11) 4528-8147; msalemme@cteep.com.br

Luiz Fernando Justo

Engenheiro de Produção-UNIMEP | Pós graduação Engenharia de Segurança - UNICAMP; Qualidade e Produtividade - UNIMEP; Gestão de Projetos-FGV.
Companhia de Transmissão de Energia Elétrica Paulista-CTEEP | Tel: 11-3138.7074 | ljusto@isacteep.com.br

Supervisão de P\&d

Carlos Alberto Ferraz do Nascimento

Pós graduado em Gestão de Projetos - MAUA - Analista de Projetos de Pesquisa e Desenvolvimento - Programa P\&D ANEEL Companhia de Transmissão de Energia Elétrica Paulista-CTEEP | Tel: 11-3138.7696 | canascimento@isacteep.com.br

Agradecimentos

Maria Teresa Z. Toniato

Pesquisadora Científica - Instituto Florestal - IF (SMA/SP)

Osmar Cavassan

Professor-UNESP Bauru e Botucatu

®
 CTEEP

Laboratório de Ecologia e Restauração Florestal

"O amor por todas as criaturas vivas é o mais nobre atributo do homem"

Charles Darwin

