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Modeling Tree Diameter Distributions in Natural
Forests: An Evaluation of 10 Statistical Models
Renato Augusto Ferreira de Lima, João Luı́s Ferreira Batista, and Paulo Inácio Prado

In forestry, the description of tree sizes is commonly performed by fitting statistical models to diameter distributions. However, there is little agreement on which models
are more flexible to this end, especially in tropical forests. Here we provide the simultaneous evaluation at species and subplot levels of 10 models using large data
sets from four representative forest types in Brazil. We aimed to detect which models provide best fits and under which sample properties (size, median, variance,
skewness, and kurtosis). We show that the combination of the logit-logistic, odd Weibull, Weibull, and Johnson’s special bounded models provided reasonable descriptions
for nearly all species (94.8%) and subplots (99.6%). However, there was little overlap between these four models, meaning that single models were rarely appropriate
to describe the majority of cases. This complementarity was evident between the odd Weibull (better performance for more symmetrical, bimodal, or rotated-sigmoid
patterns) and logit-logistic models (typical right-skewed and heavy-tailed patterns). The performance of all models was significantly related to forest type or sample
properties. Models with more than three parameters had more problems related to optimization convergence, confidence interval estimation, and unrealistic fits. Finally,
we discuss some theoretical issues related to the choice of appropriate models.
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Tree size distributions are a simple yet effective tool to de-
scribe tree populations and forest stands. They are used to
value forests, plan harvest activities, predict forest growth,

and thus enhance forest productivity (Bailey and Dell 1973, Hyink
and Moser 1983, Burkhart and Tomé 2012, p. 261–297). Size
distributions can also be used to infer past disturbance events, forest
successional status, and aboveground biomass stocks (Coomes and
Allen 2007). When assessed at the species level, they can be used to
provide information on species-specific regeneration strategies, de-
mographic rates, and population trends (Knight 1975, Wright et al.
2003).

Traditionally, tree size is assessed through stem dbh, and its
frequency distribution is described using probability distributions,
hereafter referred to as models. At least from the 1950s on, foresters
started to search for models to describe dbh distributions (e.g.,
Meyer 1952), which are typically right-skewed. Classic models used
to this end are the exponential, log-normal, Weibull, and gamma

models (Bliss and Reinker 1964, Hafley and Schreuder 1977). Also
known as lifetime distributions, these models are often used to
model the survival of machines, processes, or organisms (Lawless
2003, p. 1–8). In forestry, however, the use of such models is nearly
always phenomenological (Leak 1965). A nonphenomenological
use of such models would rely on a known relationship between tree
size and age, which is rarely available, with the exception of even-
aged stands (Bailey and Dell 1973).

Since the 1970s, new models have been derived, with some of
them being recently applied to model dbh distributions (Wang and
Rennolls 2005, Podlaski 2008). Amid the numerous models avail-
able, criteria are needed to choose appropriate candidate models.
The simplest criterion is model fit to data. This assessment has been
conducted using different combinations of models and using dbh
data from natural or managed forests (Hafley and Schreuder 1977,
Li et al. 2002, Palahí et al. 2007). Although a model capable of
describing all possible shapes of dbh distributions probably does not
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exist, there is still little agreement on what is the amount of flexibility
needed for a given model to appropriately describe this type of data.
Previous studies generally compared a restricted set of candidate
models or used dbh data from very specific forest types. In addition,
the selection of appropriate models should not be based solely on fit
to data. Other important criteria are the number and interpretability
of the parameters and the existence of proper methods of parameter
estimation and model comparison (Cox and Oakes 1984, p.
13–28).

Aiming to help the choice of flexible models to describe dbh
distributions, we evaluate the performance of a representative set of
models using empirical dbh data. To cover a wide range of possible
applications, we perform this evaluation at species and subplot levels
using data obtained from structurally different but representative
types of natural forests in southeastern Brazil. We ask the following
questions: Which models provide better fits to the observed dbh
distributions? What properties of the samples (sample size, median,
variance, skewness, and kurtosis) influence model fit? Which models
have fewer analytical drawbacks during parameter estimation? Fi-
nally, we discuss other practical or theoretical properties that may
help in the choice of proper candidate models.

Materials and Methods
Study Sites and Data Collection

Dbh measurements were conducted in four types of forests: sa-
vanna, white-sand, seasonal, and rainforests. These forests are mark-
edly different in their composition, structure, and diversity. In each
forest type, a 10.24-ha forest plot was placed in different protected
areas of southeastern Brazil (plot coordinates vary between 22°24�
and 25°04� S and 47°55� to 50°22� W). Each plot has 320 � 320 m,
resulting in a total sampled area of 40.96 ha. Within each plot, all
trees with dbh �4.8 cm were measured and identified to species. In
cases of multiple stems, if at least one stem met the dbh cutoff
criterion, measurements were taken for all stems. In cases of but-
tresses and bent trees, measurements were taken following the rec-
ommendations of Condit (1998, p. 46–54). Tree ferns or palm
species, except for Euterpe edulis, were not included because they
have limited or no secondary stem growth. Dbh data refer to the
2004/2005 surveys of the plots that resulted in densities of 2,142,
1,492, 1,176, and 1,135 trees ha�1 for the savanna, white-sand,
seasonal, and rainforest plots, respectively. Correspondingly, maxi-
mum dbh measurements were 45.2, 85.4, 216.5, and 151.2 cm.

Statistical Analyses
The evaluation of candidate models was carried out at the species

and subplot levels. We only modeled species with �30 stems in each
plot. When the same species presented �30 stems in two or more
plots simultaneously, the populations of each plot were modeled
separately. This resulted in 232 populations of 214 different tree
species and a total of 95.1% of the 64,187 stems measured in the
four plots (range, 31–4,927 stems per population; mean � SD,
263 � 568). Hereafter, these 239 populations are referred to as
species. Then, we modeled the dbh distribution of 40 � 40 m
subplots (0.16 ha), resulting in a total of 256 subplots evaluated
(range, 37–517 stems per subplot; mean � SD, 251 � 90). This
subplot dimension was chosen with the aim of avoid possible spatial
autocorrelation between subplots in their stem density and total
basal area, which had an average range of �20–30 m (R.A.F. Lima
and P.I. Prado, Laboratório de Ecologia Teórica, Departamento de
Ecologia, Universidade de Säo Paulo, unpubl. results, 2013). All
stems with dbh �4.8 cm from each population or subplot were used
to obtain the dbh distributions. The analysis using equivalent dbh
for the multistemmed trees (i.e., the dbh equivalent to the total basal
area of all stems together) instead of all stems resulted in similar
results (not shown). For all dbh distributions, we calculated sample
size, variance, standardized L-skewness, and standardized L-kurto-
sis, hereafter referred to simply as sample and skewness. We used
L-moments instead of C-moments because the first are less depen-
dent on sample size and less susceptible to the presence of outliers
(Hosking 1990). Because maximum dbh was strongly correlated to
variance and skewness, the analyses including this variable were
omitted.

We evaluated 10 models: log-normal (LN), exponential (EXP),
Weibull, gamma, Johnson’s special bounded (JSB), generalized beta
(beta), Birnbaum-Saunders (BS), logit-logistic (LL), new modified
Weibull (MW), and odd Weibull (OW) models. The first five are
commonly used to model empirical dbh distribution (Hafley and
Schreuder 1977), whereas the beta, BS, and LL models have been
applied to this end only recently (Li et al. 2002, Wang and Rennolls
2005, Podlaski 2008). As far as we know, this is the first time that
the MW (Lai et al. 2003) and OW (Cooray 2006) are being used to
model dbh distributions. Both are modifications of the Weibull
model and have the EXP and Weibull models as special cases. Gen-
eral properties of the 10 models are given in Table 1. We tried to
select a representative set of models that have up to four parameters
and that have been suggested as good descriptors of dbh distribution

Table 1. Main properties of the 10 candidate distributions used to model tree diameter distributions.

Model Parameters Bounded f(x)* h(x)*

Log-normal shape (�), scale (�) No dec, modal dec, modal
Exponential scale (�1/rate) No dec cte
Weibull shape, scale No dec, modal cte, inc, dec
Odd Weibull shape1, shape2, scale No dec, modal, S cte, inc, dec, modal, U
Mod. Weibull shape1, shape2, scale No dec, modal, S cte, inc, dec, U
Gamma shape, scale No dec, modal cte, inc, dec
B.-Saunders shape, scale No dec, modal dec, modal, S
Beta shape1, shape2, range Yes cte, inc, dec, modal, U, S cte, inc, dec, modal, U, S
Johnson’s SB shape1, shape2, range Yes dec, modal, U dec, inc, modal, U, S†
Logit-logistic shape1, shape2, range Yes dec, modal, U dec, inc, modal, U, S†

All distributions have an additional location parameter, which can be set to any desired value depending on the diameter cutoff criteria. The density function �f(x)	 defines
the probability of having dbh x, and the hazard function �h(x)	 defines the probability of death/failure in dbh x.
* Types of shapes: cte, constant; dec, decreasing; inc, increasing; modal, unimodal; U, bathtub (U-shaped); S, sinuous or rotated sigmoid (S-shaped).
† For these models, we were not able to obtain the hazard functions, so the assignment of shapes for this function may not be complete.
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in previous studies. We did not attempt to fit models with more than
four parameters, which are often difficult to estimate and to inter-
pret biologically. Moreover, we have not evaluated finite mixtures
(Liu et al. 2002) that would add subjectivity related to the arbitrary
definition of the models to be mixed.

Parameter estimation was performed using maximum likelihood
techniques (Bolker 2008, p. 227–291) and the probability density
functions (PDFs) of the 10 models (Supplemental File S1 ). The
negative log-likelihood function of each PDF was minimized using
numerical optimization to find the parameters that best fit the data,
the maximum likelihood estimates (MLEs). MLEs have many de-
sirable statistical properties, such as invariance to reparameteriza-
tion, consistency, and asymptotic normality (Royle and Dorazio
2008, p. 43–50). In addition, studies have reported MLEs as being
superior or comparable to other parameter estimation methods,
such as moments and percentile methods (Zhou and McTague
1996, Zhang et al. 2003). Because dbh distributions are left trun-
cated, we used location-free versions of the PDFs to build the like-
lihood functions, and we fixed the location parameter at minimum
dbh � c, a constant that simply is half of the dbh measurement
precision. Although arbitrary, fixing the location parameter avoids
convergence problems and biased estimates (Cousineau 2008). An
exception to this rule was the BS model that had the location pa-
rameter fixed at minimum dbh � 2c. The LN and BS models were
very sensitive to the definition of the location, so that when it was
fixed at values close to minimum dbh, both models had much worse
performance (results not shown). Ideally, all 10 PDFs should have
been truncated using the accumulated probability at the location.
However, cumulative distribution functions were not available or
did not have a closed form for all models, which greatly complicates
the numerical estimation of the parameters.

Three of the 10 models (beta, JSB, and LL models) are bounded,
meaning that they only vary within a finite interval of values. For
these models, the range parameter was kept free during optimiza-
tions, and the maximum minus minimum dbh was used as the
starting value in the optimization routine. For other parameters and
for unbounded models, starting values for the parameters were de-
fined using the method of moments, whenever available for a given
model. All fits were visually inspected by superimposing them to
density histograms. In cases of bad fits, we varied the start parame-
ters, the maximum number of iterations, or the optimization
method (e.g., Nelder-Mead, quasi-Newton, or simulated annealing
[Bolker 2008, p. 293–346]). This was particularly true for bounded
models that often resulted in unreasonable fits, such as U-shaped fits
when the distribution was clearly not U-shaped.

The comparison of candidate models was based on the Akaike
information criterion (AIC � �2 ln(L) � 2k, where L is likelihood
and k is number of parameters) that measures the distance of a
candidate model relative to an unknown true model, taking into
account the number of parameters in the model (Burnham and
Anderson 2002, p. 60–64). The difference in AIC from the model
with the lowest AIC (
AIC) was used here as a measure of “goodness
of fit,” allowing simultaneous comparison of models with different
numbers of parameters. The performance of the 10 candidate mod-
els to describe each dbh distribution was classified into plausible or
nonplausible according to their 
AIC. We used three different

AIC thresholds (two, four, and seven) to rank models. If 
AIC was

smaller than the threshold, than the model was ranked as “plausi-
ble.” The use of larger thresholds avoids models providing good
descriptions to data being discarded due to small sample sizes (when
n is small, models with fewer parameters tend to perform better
[Richards 2005]). We are aware that the 
AIC of each model is
conditioned on the set of candidate models. Therefore, we also
present an evaluation of the models based on the general shapes that
they can assume, which is described here in terms of their coverage
in the skewness-kurtosis space, sometimes referred to as the �1-�2

plane (Hafley and Schreuder 1977, Wang and Rennolls 2005).
However, instead of the skewness-kurtosis space based on C-mo-
ments, here we also used standardized L-moments. Each model
covers an amount of area in the skewness-kurtosis space, and the
comparison of these areas can be used to select appropriate candidate
models for specific situations.

The effect of sample properties on model performance was eval-
uated by regressing the performance of each model on sample size,
median, variance, skewness, kurtosis, and forest type. A separate
regression was applied to each combination of models and sample
properties. Because the performance of the models was binary (plau-
sible and not plausible), analysis was performed using mixed-effects
logistic regressions (Pinheiro and Bates 2000, p. 337–347), in which
the sample properties were the fixed effects and the evaluation level
(species or subplots) was the random effect. Thus, although the
performance of models at species and subplot levels was lumped
together (n � 488), we controlled for the variations in model per-
formance between levels of evaluation. The overall effect of the
sample property on the regression model was assessed by comparing
the AIC of regression models with and without the sample property
as a covariate. The difference between forest types was assessed based
on the overlap of likelihood profiles of their coefficient estimates.
The same procedures were used to perform a direct comparison
between the two models with the best fit to the data, aiming to assess
under which sample properties each model performed better. In
practice, we assessed whether the means of sample properties were
different for dbh distributions that were well fitted by the first or
second model, by both models, or by neither of the two models.
Analyses were performed using R version 2.14 and the packages
bbmle (Bolker 2010) and lme4 (Bates et al. 2012).

Results
The evaluation of the 10 models in terms of their fit to dbh data

resulted in the following best-to-worst ranking: LL, OW, Weibull,
gamma, beta, JSB, MW, EXP, LN, and BS. This outcome varied
little among species and subplot levels and between ranking using
different 
AIC thresholds (Table 2). The main difference was that
the OW performed better at the species level, whereas the LL per-
formed better at the subplot level. It should be noted, however, that
single candidate models were rarely appropriate for describing the
majority of dbh distributions. The models with the best fit to the
data, the OW and LL, provided plausible fits for 51 and 60% of
the species and subplots at an 
AIC threshold of 2, respectively. The
top three models provided plausible fits for 87.5% of species and
94.5% of subplots at the same threshold level. The JSB was the
model with the least overlap with the top three models in cases for
which it provided reasonable descriptions for dbh data (Figure 1),
raising these proportions to 94.8 and 99.6%. The gamma model,
which outperformed the JSB, had a large overlap with the Weibull

Supplementary data are available with this article at http://dx.doi.org/10.5849/forsci.14-070.
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(72.9% at 
AIC threshold of 2). There was also a large overlap of
the Weibull and MW with the OW (66.5 and 86.7%, respectively)
and of the JSB with the LL (62.3%). The one-parameter EXP pro-
vided good fits for only 19% of the distributions, and out of this
proportion only 11% did not overlap with the Weibull or OW,
which have the EXP as a special case [shape parameter(s) � 1].

The overall results presented above are well illustrated by the
comparison between the sample skewness and kurtosis of the ob-
served dbh distributions and the theoretical skewness-kurtosis space
that the candidate models cover (Figure 2). In this graph, the two-,
three-, and four-parameter models are represented by points, lines,
and planes, respectively. The two best models in terms of fit, the LL
and OW, were the ones with the largest coverage of the skewness-
kurtosis space. However, the Weibull (upper limit line of the MW)
and gamma (upper limit line of the beta) represented by lines out-
performed much more flexible models such as the beta, MW, and
JSB. Thus, it seems that the position of the upper limit line of the
four-parameter models and not that of their lower limit line was
crucial to their ability to fit the observed dbh distributions. The LN
line (upper limit line of the JSB) passes above or below the majority
of the values of skewness and kurtosis observed for species and
subplots, respectively, which may explain its poor performance in
this study. The same was true for the line of the BS (not shown in the
graph for clarity), a model that was only appropriate for distribu-
tions with a well-defined mode at values away from the location. As
expected, the one-parameter EXP represented by a single point (Fig-
ure 2) was not very flexible to fit the variety range of observed
skewness and kurtosis.

The performance of models was significantly related to sample
properties and forest type. In general, their performance worsened as
size, total basal area, variance, skewness, and kurtosis of the sample
increased (Table 3). Exceptions were the positive relationships of the
OW with sample size and of the LL with sample variance, skewness,
and kurtosis. The absence of a relationship between the JSB with
variance and skewness and between the OW with basal area, kurto-
sis, and forest type was remarkable as well. The direct comparison
between the LL and OW performances revealed that the OW was
more appropriate for distributions with larger medians and smaller
variances, skewness, and kurtosis (i.e., more symmetric distribu-
tions) than the LL (Table 4). The OW also performed better for
fitting unimodal distributions and distributions with tendencies for
bimodality. The visual inspection of model fits revealed some of
these trends (Figure 3).

Figure 1. Venn diagrams of the four distributions with the best fit
to species and subplot diameter distributions. The numbers repre-
sent the cases in which a model provided plausible descriptions for
dbh data, exclusively or simultaneously with other models.

Table 2. Performance of the 10 candidate models used to describe species and subplot level diameter distributions.

Model

Species (n � 232) Subplots (n � 256)

�2 �4 �7 M�
AIC	 �2 �4 �7 M�
AIC	

Log-normal 8.6 13.6 18.7 18.5 5.1 9.7 16.9 20.3
Exponential 24.6 33.2 50.4 6.7 13.3 18.4 25.0 15.9
Weibull 44.4 59.1 73.3 3.2 34.0 44.1 56.3 5.3
Odd Weibull 50.9 77.2 89.7 1.9 48.1 71.5 87.5 2.3
Mod. Weibull 28.0 63.7 77.6 3.3 10.6 36.7 48.8 7.1
Gamma 34.1 48.3 68.5 4.3 26.6 35.6 44.1 8.5
B.-Saunders 10.4 17.4 25.5 19.8 2.8 6.6 7.7 37.1
Beta 30.2 60.4 77.6 3.4 11.3 28.5 39.4 10.1
Johnson’s SB 25.4 43.5 56.5 4.4 13.3 21.9 35.2 8.9
Logit–logistic 46.3 64.1 73.7 2.5 60.2 71.9 84.8 0.6

Values represent the percentage of times when the distribution provided a plausible fit among the set of candidate models. Model ranking was done using three different
thresholds of 
AIC (i.e., 2, 4, and 7). M�
AIC	 is the median of the 
AIC values for each model; lower M�
AIC	 values indicate better performances of the models.
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Figure 2. Coverage of the models evaluated in the L-skewness versus L-kurtosis space and the values of the two sample L-moments for
the observed species (E) and subplots (‚) dbh distributions. Here, the EXP model is represented by the point (L-skewness, L-kurtosis) �
(1/3, 1/6), whereas the LN, Weibull, and gamma models coincide with the upper limits of the JSB, MW, and beta models, respectively.
The BS is not presented for clarity. The vertical dashed line is the line of perfectly symmetrical distributions (i.e., L-skewness � 0).

Table 3. Results of the simple mixed-effects logistic regressions used to assess the effects of different sample properties and forest types
on the performance of the 10 models evaluated here.

Model n BA Med var Skew Kurt Forest type

Log-normal 14.6* 2.1* 0.6 3.9† 31.9† 21.8† 8.5: Rf � Ws � Sv � Sf
Exponential 12.8* 32.9* �1.5 0.1 �1.9 0.9 2.5: Rf 
 Sf � Ws � Sf
Weibull �1.4 30.9* 3.2* 47.1* 26.4* 11.3* 17.5: Sv � Sf 
 Rf � Ws
Odd Weibull 3.7† �1.2 �1.2 6.8* 8.4* �1.2 1.9: not significant
Mod. Weibull �0.2 1.2 4.7† 17.0* 131.4* 80.2* 17.9: Sv � Ws � Sf � Rf
Gamma 3.1* 45.0* 5.5* 39.6* 10.5* 10.0* 10.9: Sv 
 Sf � Rf � Ws
B.-Saunders 17.1* 1.8 1.9 1.9 12.3† 3.7† 4.7: Rf � Sv � Sf � Ws
Beta �1.8 11.4* �0.1 20.0* 112.3* 98.3* 11.1: Sv 
 Ws � Sf � Rf
Johnson’s SB 27.6* 12.5* �1.9 �0.8 �0.5 27.5* 18.5: Rf � Sv � Ws 
 Sf
Logit-logistic 34.4* �1.9 �1.8 36.3† 69.9† 44.3† 29.7: Rf � Ws � Sf 
 Sv

Values correspond to the 
AIC between the model without the covariate (constant model) and the model with the covariate. If the 
AIC value is positive, the model with
the covariate was a better fit than the constant model; if the 
AIC value is negative, the model with the covariate was a worst fit. Absolute 
AIC values �2 are not strong
evidence of a difference between the fit of models. Regressions were constructed separately for each combination of model and sample property. The results for forest type
are given in decreasing order of performance from left to right and � means that one forest type has mean performance equal to that of the adjacent one, but different from
that of the others. n, sample size; BA, basal area; Med, median; Var, variance; Skew, L-skewness; Kurt, L-kurtosis; Sv, � savanna; Ws � white-sand; Sf � seasonal forest;
Rf � rainforest.
* Negative/decreasing relationship between model performance and the covariate.
† Positive/increasing relationship between model performance and the covariate.

Table 4. Comparison of the sample properties of observed dbh distributions for which the Logit-logistic, Odd Weibull, both, or other
distributions were plausible fits.

Logit-logistic (154) Odd Weibull (136) Both (105) Others (93)

n 197.9 � 117.7A 398.3 � 573.2B 169.7 � 105.1A 244.8 � 519.4A
Median 9.5 � 2.9A 10.3 � 4.1B 9.7 � 3.5AB 9.8 � 2.8AB
Variance 122.2 � 136.5A 57.4 � 67.2B 112.6 � 125.8A 63.9 � 76.3B
Skewness 0.412 � 0.107A 0.293 � 0.118B 0.392 � 0.158A 0.313 � 0.103B
Kurtosis 0.210 � 0.091A 0.162 � 0.092B 0.243 � 0.121C 0.154 � 0.073B

The same letters indicate that the means were not different between groups. The addition of the grouping variable in the model greatly improved the overall fit for all sample
properties (i.e., 
AIC between models with and without the grouping variable was always 
4). The number of distributions in each group is given in parenthesis. n, sample
size; Skewness, standardized L-skewness; Kurtosis, L-kurtosis.
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The two- and three-parameter models presented no problems of
convergence in the numerical optimization and fits were very robust
to changes in the start parameters. For other models, namely OW,
MW, beta, JSB, and LL, parameter estimation generated optimiza-
tion problems (nonconvergences using the initial starts were 9, 1, 4,
2, and 62, respectively). Most of the convergence problems occurred
at the species level and were solved by changing the start parameters.
For the LL, however, convergence was not attained at all in 11 cases.
In general, the OW and MW were much less sensitive than the beta,
JSB, and LL to bad start parameters. The flexibility of the beta, JSB,
and especially the LL resulted in some U-shaped fits, i.e., fits that
predicted increasing probabilities of having larger dbh values. Very
large range estimates such as values 
500 were also common for the
beta model. The inversion of the Hessian matrix to find the confi-
dence intervals of the parameters (Bolker 2008, p. 262–263) fre-
quently failed for the four-parameter models, mainly the bounded
ones. And when these intervals were attainable, they often were so
broad that they became meaningless.

Discussion
At the species and subplot levels, we described dbh distributions

obtained from four 10-ha plots placed in contrasting types of natural
tropical forests. In terms of fit, the overall result was straightforward:
the joint use of the LL, OW, Weibull, and JSB models provided
good descriptions for nearly all species and subplot dbh distribu-
tions. Good performances of the LL, Weibull, and JSB have been
demonstrated before in natural (Podlaski 2006, Palahí et al. 2007)
and planted forests (Nanang 1998, Wang and Rennolls 2005). Our
results place the OW among models with better performances for
the description of dbh data. Overall, the LL and OW models often
provided good descriptions regardless of the 
AIC threshold ad-

opted, meaning that even when they were not the best fit, their fit
was generally plausible.

Although the LL and OW models covered wide ranges of skew-
ness and kurtosis, they performed better under different circum-
stances. The OW described better, more symmetrical distributions
or distributions with trends toward bimodal or rotated sigmoid
shapes (Goff and West 1975). This may be the case for early-suc-
cessional species (Wright et al. 2003), species or stands presenting
peaks of growth and/or mortality (Leak 2002), even-aged stands
(Schmelz and Lindsey 1965), and forests under thinning (Maltamo
et al. 2000) or harvesting focused on specific tree sizes. This last
suggestion was evident for Euterpe edulis (Figure 3G), a palm species
that is illegally harvested in the rainforest plot. Moreover, the OW
was able to deal with such irregular distributions using fewer param-
eters than finite mixtures (Zhang et al. 2001, Liu et al. 2002). In
addition, the OW performed better for larger sample sizes, which
might suggest that the best fit of the LL and other models over the
OW could be a matter of sample size. Conversely, the LL is indi-
cated for typical right-skewed patterns, which was probably the
reason that the LL performed even better at the subplot level. In
particular, the LL described well species with large contributions of
small and extreme values at the same time (Figure 3B). This may be
the case for large-sized species with low growth and/or high survival
of juveniles (shade-tolerant species [Knight 1975]) or with massive
recruitment followed by high juvenile mortality (emergent species
[Swaine and Hall 1988]).

The beta model, although being fairly flexible in shape (Figure
2), performed worse than the two-parameter Weibull and gamma
models. In addition, we found little difference between the perfor-
mance of the beta and JSB models at either level, somewhat contra-
dicting the results found by Li et al. (2002) and by Wang and

Figure 3. Examples of the observed dbh-frequency distributions and their respective fits by the four models with best fit to data: (A)
Aspidosperma polyneuron (seasonal forest); (B) Trichilia catigua (seasonal forest); (C) Maprounea guianensis (savanna); (D) Ocotea
corymbosa (savanna); (E) Ocotea pulchella (white-sand forest); (F) Myrcia ilheosensis (White-sand forest); (G) Euterpe edulis (rainforest);
(H) Calophyllum brasiliensis (white-sand forest). Note that the x-axis is presented in log scale in panels A–D but not in panels E–H.
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Rennolls (2005) and those that would be expected solely by the
assessment of the skewness-kurtosis space coverage of the candidate
models. Moreover, we found better performance of the Weibull
than of the MW, an unexpected result based on Lai et al. (2003).
This shows that the flexibility given by the extra parameter of the
beta, JSB, and MW models was not enough to overcome the penalty
imposed by the AIC on these less parsimonious models, at least for
this type of data. Besides providing poorer fits than the best perfor-
mance models, the gamma and MW had great overlap with them, so
the decision of selecting these models to describe similar forests
should be based on criteria other than fit (see below). The EXP, LN,
and BS models clearly performed worse, suggesting that they may
provide better descriptions in temperate or managed forests, as
found by Bliss and Reinker (1964), Nanang (1998), and Podlaski
(2008).

A good fit to data, however, should not be the sole criterion to
select one model over another. One may choose models with equally
good or poorer fits if there are theoretical or practical reasons to do
so (Burnham and Anderson 2002, p. 15–19). Each model has its
own theoretical assumptions on the processes generating the ob-
served patterns, and if these processes make sense to a given popu-
lation or forest, a model can serve as a hypothesis of underlying
mechanisms. For instance, an exponential pattern is expected when
individual mortality and growth are independent of tree size
(Muller-Landau et al. 2006), meaning that tree growth and death
are related to random events independent of the individual (Cox
and Oakes 1984, p. 13–28), such as disturbances. A Weibull distri-
bution is expected when mortality is constant, but growth is a
power-law function of tree size (Muller-Landau et al. 2006). The
LN assumes a multiplicative degradation process (Leiva et al. 2009,
p. 35–37). The gamma assumes mortality as a wear-out process
generated by the accumulation of independent but consecutive
damage or stress events (Leiva et al. 2009, p. 35–37). Unfortunately,
there is no such clear interpretation of the theoretical assumptions
for all models. Some of them have been derived from transforma-
tions of other models, such as the MW, OW, LL, and JSB (Lai et al.
2003, Wang and Rennolls 2005, Cooray 2006), making them more
phenomenological than theoretical descriptions of diameter distri-
butions. Moreover, the above-cited assumptions of the models may
only be valid under the assumption that populations are at demo-
graphic equilibrium (Harcombe 1987, Muller-Landau et al. 2006).
And because different processes may result in similar patterns, there
is always the risk of a model describing well a pattern that has been
generated by processes different from those assumed in the original
formulation of such a model (Lawless 2003, p. 38).

In addition to theory, the selection of models can be judged by
the existence of meaningful parameters. Models with two shape
parameters such as the LL, OW, MW, beta, and JSB are more
flexible, but they are also more difficult to interpret biologically. In
addition, one may give preference to models that have the EXP as a
special case (e.g., gamma and Weibull, and its generalizations), so
that deviations from the well-known exponential pattern can be
easily assessed (Schmelz and Lindsey 1965). Moreover, one should
ask whether bounded models (e.g., LL, Beta, and JSB) make sense
for the data in hand. Their fit is quite sensitive to the definition of
upper and lower bounds, which are generally defined arbitrarily,
vary with sample size, or change over time in planted forests (Palahí
et al. 2007, Taubert et al. 2013). Although the range parameter
could provide extra information on tree maximum sizes, in this

study it often worked purely as a phenomenological parameter with
unrealistic estimates, such as dbh ranges larger than 500 cm.

We showed that the performance of some models was less influ-
enced by sample properties than others. For instance, the lack of
relationship of model performance with forest type was a positive
feature of the OW over other models. In addition, technical or
computational convenience, such as the frequency of convergence
problems and sensibility to start parameters in optimization proce-
dures, can be taken into account as well (Cox and Oakes 1984, p.
1–11). Optimization procedures for four-parameter models often
result in convergence problems. Unfortunately, the definition of an
appropriate set of candidate models based on criteria other than fit is
much more subjective and greatly relies on the researcher’s previous
knowledge of the models and on the system being modeled (Burn-
ham and Anderson 2002, p. 15–19).

Although the evaluation presented here ended in straightforward
results, the performance of the 10 candidate models should be in-
terpreted with care. We could have had different outcomes if dbh
data had come from managed forests (Nanang 1998, Li et al. 2002)
or from even-aged stands (Bliss and Reinker 1964, Nord-Larsen and
Cao 2006), had different cutoff criteria (Goff and West 1975), or
had different development stages (Podlaski 2006). Moreover, other
aspects not covered here can be addressed in future research. What
would be the effect of different criteria to define the location or
range parameters? Another promising approach is the assessment of
the LL and OW to model bivariate distributions such as tree dbh
and height (Li et al. 2002) or distributions in time (Knoebel and
Burkhart 1991). It seems unlikely that the use of parameter estima-
tors other than maximum likelihood would lead to different out-
comes in terms of model performance. However, it would be inter-
esting to explore maximum likelihood methods that could account
for dbh measurement errors (Taubert et al. 2013) or that could give
greater weight to larger dbh values (Cousineau 2008), which are
much less frequent but greatly contribute to forest structure and
biomass (Chave et al. 2003). Thus, although there were clear indi-
cations of flexible candidate models to describe very different forest
types, there still are many opportunities to broaden the use of such
models to describe tree diameter distributions.
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