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A B S T R A C T

In this study, we present the first tree-ring chronology for the tropical tree species Copaifera lucens and its
climatic signal in southeastern Brazil. Tree-ring width series were compared with local climate indices using a
drought index (Standardized Precipitation Evapotranspiration Index —SPEI), in monthly, bi-monthly and four-
monthly scales. We also calculated negative pointer years over the time-span of the tree-ring width. The radial
growth of C. lucens showed a positive correlation with the SPEI of the current summer and autumn in all the
three analyzed time scales, while the negative pointer years matched with drier years. The species was highly
sensitive to very low summer precipitation, which may lead to a 49% reduction in growth. We conclude that the
long-living C. lucens has a great potential for dendrochronological studies as it shows a marked climatic signal.
Our study also reinforces the importance of rainfall in regulating radial growth in tropical forests and sheds light
on the local climate influence on tree growth in recent decades.

1. Introduction

Forests play multiple roles related to ecological systems, species,
economy, culture, aesthetics, human health, among others (Hassan
et al., 2005). In addition, forests influence global climate through
physical, chemical, and biological processes that affect the hydrologic
cycle and atmospheric composition (Bonan, 2008; Shukla et al., 1990;
Wagner et al., 2016). On the other hand, the performance of forests is
influenced by climate conditions (Fritts, 1976; Schweingruber, 1988;
Speer, 2010), making up a complex feedback loop between climate and
forests. Considering the evidence on current environmental and cli-
matic changes (IPCC, 2014), as well the importance of such a feedback
loop, it is relevant to investigate how plants react to changes in climate
conditions (Bazzaz, 1996).

In this sense, tree-ring analysis provides accurate information on the
magnitude and frequency of variations in past climate patterns (Cook,
1987; Fritts, 1976; Jacoby, 1989). In favorable climatic years to plant
growth, the tree rings are wider, whereas in years subject to climatic

stress, such as water excess or water deficit, or even extreme tem-
peratures, produce narrow rings (Schongart et al., 2004; Speer, 2010;
Stokes and Smiley, 1996). Due to this, dendrochronology has been used
as a proxy to reconstruct the climatic past and to access information
about the plants' responses forward over time (Cherubini et al., 2003),
e.g., growth rates, wood production, rotation times and to estimate
changes in the C-stocks of above-ground wood bio- mass (Fichtler,
2015; Jacoby, 1989; Schöngart et al., 2011).

Many dendrochronological studies have contributed to the under-
standing of climate changes in tropical ecosystems. Brienen et al.
(2010) analyzed the tree-rings of Mimosa acantholoba (Willd.) Poir in
dry forests of southern Mexico and Central America, finding a negative
effect of El Niño years on tree growth by as much as 37%. Callado and
Guimarães (2010), studying Schizolobium parahyba (Vell.) S.F. Blake in
Atlantic Forest also noted that the rings were narrower in years under El
Niño influence and wider in years under La Niña influence. Dünisch
(2005) points out that in his study 57% of variability of the annual
increment of Cedrela fissilis Vell. in Amazon was due to temperature and
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precipitation related to El Niño. Schongart et al. (2004) present a more
than 200-year long chronology of Piranhea trifoliata (Baill.) in the
Amazon and showed a general trend of increase of El Niño events from
the 19th to the 20th. These examples highlight the importance of
dendrochronology to understand the effects of climate change on forest
growth and carbon stocks in several ecosystems.

Tropical forests store between 25% and 54% of the terrestrial bio-
sphere carbon and 33% of the primary terrestrial net production
(Bonan, 2008; Liu et al., 2015). However, these stocks are at risk due to
anthropogenic deforestation and possibility of release of carbon driven
by climate change (Cramer et al., 2004). The Brazilian Atlantic Forest is
considered one of the richest hotspots in biodiversity (Myers et al.,
2000), containing more than 19,000 plant species (Forzza et al., 2012).
However, deforestation has already reached 88.27% of its original area
(Ribeiro et al., 2009) making this ecosystem among the most vulnerable
to climate changes (Bellard et al., 2014). Despite the great diversity,
dendroclimatological studies are still scarce in the Atlantic forest.

The “Tabuleiros” Atlantic Forest (TAF), located in southeastern
Brazil, presents a floristic mixture of Amazonian and Atlantic elements
(Garay et al., 2003; Jesus and Rolim, 2005; Peixoto and Gentry, 1990;
Rizzini, 1963; Siqueira, 1994; Veloso, 1991) and is considered to have
the highest trees species density per hectare in the globe (Thomas et al.,
2008). Within a broader vegetation scheme, TAF is within the “Lowland
Dense Ombrophilous Forest” and the “Lowland Semideciduous Forest”
(IBGE, 2012; Veloso, 1991). The contribution of organic material to the
soil is another evidence of the seasonality in this forest, which shows a
temporal rhythm modulated essentially by precipitation (Louzada et al.,
1997). Total litter fall of many plant species shows irregularity in years
with climatic anomalies, triggering changes in the community patterns

(Engel, 2001).
The wood of Copaifera L. (Leguminosae) is characterized by inter-

cellular canals (secretory canals), which are distributed in concentric
bands along the marginal axial parenchyma that delimits the growth
rings (Alencar and da, 1982; Barbosa, 1982; Grandis et al., 2010;
Martins-da-Silva et al., 2008; Metcalfe and Chalk, 1950). Yet, applica-
tion of dendrochronological techniques in these species may be chal-
lenged by the presence of both false rings and confluent rings, as it was
reported for Copaifera multijuga Hayne and Copaifera langsdorffii Desf.
(Medeiros and da, 2016; Melo-Júnior et al., 2011). Copaifera lucens
DWYER is an endemic species that occurs in northeastern and south-
eastern Brazil (Costa, 2017). In C. lucens, the main marker of the growth
rings is also the axial marginal parenchyma associated with the secre-
tory canals (Barbosa, 1982).

A first step in predicting forest resistance and resilience to climate
change is to know how it performed in relation to past climatic con-
ditions. To investigate this issue by dendrochronological methods, it is
necessary to identify which species are sensitive to the climate to the
point of triggering annual growth rings. In this context, our goal was to
explore the dendrochronological potential and to assess climate influ-
ence on radial growth in C. lucens, the endemic species forming growth
rings in seasonal tropical lowland Atlantic Forest. Since the markedly
seasonal rainfall regime prevailing over its geographic range is deemed
to play a major role in controlling growth rhythm, we hypothesize that
growth rings of C. lucens are formed on an annual basis. Likewise, we
expect to find a common signal among ring-width series of trees in a
site, as well as a positive association between ring width and water
availability.

Fig. 1. A – Map of the study area in the state of Espírito Santo, in southeastern Brazil. Red points indicate the georeferenced locations of the sampled trees. B – Study
area location in South America and Brazil. C – Climatic diagram of the study area. Bars show standard deviation. Data provided by Instituto Capixaba de Pesquisa,
Assistência Técnica e Extensão Rural (INCAPER) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article).
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2. Material and methods

2.1. Study area and species

The study was carried out in the Reserva Natural da Vale, an area of
23,000 ha covered by a well-preserved tropical seasonal forest called
“Tabuleiros” Atlantic Forest. It is located in the state of Espírito Santo,
in the southeastern region of Brazil (19 °S - 19°14′S, 39°12′W - 40 °W),
between 30 and 80m a.s.l., approximately 30 km off the coast of the
Atlantic Ocean (Fig. 1).

The climate in the area is classified as a seasonal tropical with a dry
season (Koeppen, 1948), and has an average annual precipitation and
temperature of 1230mm and 23.8 °C. The monthly precipitation
averages of the warmer and wetter season vary between 130 to ap-
proximately 200mm from October to April during which 72% of pre-
cipitation occurs (Rolim et al., 2016). Precipitation during the drier and
cooler season does not exceed 25% of the totals annual, being below
60mm from April to September (Víncens et al., 2003). The average
temperature ranges between 19.7 °C in July to 28 °C in February
(Fig. 1C). Severe droughts are related to strong “El Niño-Southern Os-
cillation “(ENSO) events (Rolim et al., 2016). Evapotranspiration is an
important climate component in this region, attaining in average
1246mm per year, with maximum values in summer and frequently
exceeding precipitation in winter (Víncens et al., 2003).

Soils in the sampling area are predominantly yellow podzolic
(yellow, tertiary argisol), dystrophic, with a drastic difference in grain
size according to depth, presenting low fertility and low cation-ex-
change capacity (Garay and Silva, 1995; Louzada et al., 1997). Mull
humus is present (∼ 3.9 t / ha−1), with rapid decomposition of organic
inputs (∼ 9 months), being the main soil nutrient reservoir (Garay and

Silva, 1995; Louzada et al., 1997).
Data cataloged from the herbarium material of the Reserva Natural

da Vale shows that C. lucens is semideciduous (losing ∼ 80% of the
leaves in winter), flowering from February to June and fruiting in May
(immature fruits) and June. Species of this genus are large and slow-
growing trees, ranging from 25 to 40m in height, found in late sec-
ondary and climax forests (Carvalho, 2003; Lorenzi, 2002).

2.2. Sample collection, preparation and tree-ring analysis

For tree rings analysis, we selected 20 trees without external evi-
dence of trunk and crown injuries distributed in a mature stand (Fig. 1).
Mean trunk diameter at breast height in sampled trees was 53 cm
(20–85 cm) and mean height 29m (24-34m). All individuals were geo-
referenced. For each tree, we collected up to three transversal wood
cores (radii) at breast height, using a 5-mm diameter increment borer.
We treated the injuries inflicted on sampled trees with a mix of 15 g of
copper sulfate and 15 g of whitewash dissolved in 2.5 l of water. Wood
cores were air-dried and then glued to wooden holders. After that,
cross-sections were polished with sandpaper, with progressively finer
grades, from 80 to 600 grits, until the anatomical characteristics of the
ring boundaries were clearly identifiable.

The obtained cross-sections were visually examined under a ste-
reomicroscope (Zeiss MZ8, ×10 magnification) and the growth-layers
boundaries were identified and marked. Beside growth layers, wood
anomalies were considered as possible time markers (Wils et al., 2011,
2009), such as deformed or colored filled cells (probably with oil-resin),
false or indistinct rings, vessel distribution and fiber wall thickness.
Wood cross-sections were then scanned with a high resolution at
1200–2400 dpi (Epson Perfection V750 PRO) with a reference scale,
and the tree-ring widths measured using the Image Pro Plus software,
version 4.5.0.29 (Media Cybernetics, 2001).

We took some images (camera Canon DS126311) to macro-
scopically characterize the main difficulties in dating C. lucens growth
ring.

2.3. Crossdating and chronology building

Crossdating cores proved to be very difficult, especially in the inner
part of the core segments showing narrower growth layers. Thus, only
the last ∼50 growth rings of each tree were analyzed, taking into ac-
count that the minimum time-span indicated for crossdating is around
30–50 years (Briffa and Jones et al., 1990; Pilcher, 1990; Stahle et al.,
1999), and because the local meteorological series available to explore
climatic signals were recent (see below).

Crossdating quality was checked with the software COFECHA
(Holmes, 1986, Holmes, 1983), following a stepwise process (Fig. 2).
First of all, we crossdated series within trees with the software CO-
FECHA. Then, after the crossdating was satisfactorily performed within-
trees, mean tree-ring widths series for each tree were obtained through
a bi-weighted robust mean function, in ARSTAN software (Cook, 1985;
Cook and Holmes et al., 1996). With the average series of each tree, we
checked the crossdating among trees in COFECHA again. Two of the
trees had high correlation and were then compared with the remnant
mean tree series and testing also with the individual cores of the rem-
nant trees. If changes were feasible according to the re-inspection of
wood-anatomical features, dating adjustments were made and the
series aggregated in the master chronology subset, given that its in-
clusion did not impair the master’s overall intercorrelation. Higher
correlations were established with the best cores of each tree (whose
rings are well defined and easily dated) than with the mean radii of the
trees. The process finished once no more inclusion of tree cores series
was possible due to poor visibility of ring boundaries in some samples.
Therefore, 14 trees composed the master chronology, being two com-
posed by mean series and 12 by one core per tree.

After the crossdating process, ring-width series were standardized to

Fig. 2. Scheme of the steps followed for crossdating. Adapted from Wils et al.
(2011).
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filter non-climate-related growth variations. For each tree, we fitted a
Cubic Smoothed Spline Function (50% variance cutoff in 21 years
segment length) and computed ratios between observed and predicted
values, obtaining indexed ring-width (RWI) series that were combined
in a Standard site chronology (STD) through a bi-weighted robust mean
function. Therefore, the autocorrelation of RWI series was filtered by
autoregressive modeling and the resulting series combined in a Residual
site chronology (RES chronology) using a bi-weighted robust mean
function (Cook, 1985). The following statistics were used to describe
the resulting chronologies: average and standard deviation (SD) of tree-
ring widths, mean sensitivity index (MSI), mean autocorrelation (AC),
mean intercorrelation (rint), mean correlation between series (rbar) and
mean expressed population signal (EPS) (Fritts, 1976; Speer, 2010;
Wigley et al., 1984). These calculations were performed on ARSTAN
software (except rint, calculated on COFECHA).

2.4. Detection of dendroclimatic signals

To explore radial growth responses to climatic conditions, we con-
sidered monthly total precipitation and mean temperature data re-
corded in a nearby meteorological station, 10 km away from the study
site, carried by the Instituto Capixaba de Pesquisa, Assistência Técnica e
Extensão Rural (INCAPER). The monthly meteorological series covers
the period from 1976 to 2012, with few data gaps (12 for precipitation;
16 for temperature) that were filled with the respective month average
(Fig. 3).

Based on these, we estimated the Standardized Precipitation
Evapotranspiration Index – SPEI (Fig. 3). This is a drought index, sen-
sitive to global warming and based on a simple climatic water balance
that takes into account the evapotranspiration. SPEI values close to zero
indicate a normal monthly water balance for a given timescale
(monthly or seasonal basis, for instance), while negative (or positive)
values indicate drier (or wetter) than expected conditions for that
timescale (Vicente-Serrano et al., 2010).

Climatic data were analyzed according to the growing season in
order to determine the SPEI time scales. Precipitation below 60mm was
considered as a dry month, because this precipitation threshold may
affect the growth of tropical trees (Worbes, 1995). Most years had
drought events (< 60mm of precipitation) that range from one (62%)
to two months (18%) during the growing season. Four consecutive
months of drought in one growing season is a rare event in the analyzed
series (only one year), whereas there were years with no dry months
during the growing season (18% of years). In this way, we tested
monthly SPEI series, calculated in monthly (SPEI1), bi-monthly (SPEI2)
and four-monthly (SPEI4) scales.

Afterward, we used Correlation Function Analysis (Blasing et al.
1984) to test the existence of dendroclimatic signals in C. lucens by
comparing the RES chronology to monthly SPEI series, calculated in
monthly (SPEI1), bi-monthly (SPEI2) and four-monthly (SPEI4) scales.
We considered possible radial growth responses to climatic conditions
through the previous and current growth year by correlating the RES
chronology to SPEI series from October (spring) of the previous growth
year to April (autumn) of the current growth year. The statistical sig-
nificance of the correlation coefficients was addressed on a 95% con-
fidence interval obtained by bootstrap resampling (Biondi and Waikul,
2004). SPEI estimates and Correlation Function Analyses were per-
formed on R program (R Studio Team, 2016), respectively in packages
SPEI (Beguería and Vicente-Serrano, 2017) and bootRes (Zang and
Biondi, 2013).

Pearson’s correlations were calculated to verify the agreement be-
tween SPEI1 (most frequent event) and RES chronology. To verify the
match between RWI and SPEI1 over time-span, negative pointer years
were highlighted. Pointer years were considered to occur when RWI
was at least 25% below the average of the previous four years (Oliveira
et al., 2016).

3. Results and discussion

3.1. Tree-ring characteristics

The species has an eccentric growth that makes crossdating difficult,
with many false and wedging rings, especially near the pit, while the
recent rings are better marked (Fig. 4). These characteristics are fre-
quent in the genus, being observed up to seven false rings in a year in C.
langsdorffii (Medeiros, 2016; Melo-Júnior et al., 2011).

The average annual tree-ring widths ranged from 1.54 to 3.44mm
yr.−1 with an average value of 2.25mm yr-1 (Table 1). Costa et al.
(2015) found in C. langsdorffii an annual mean tree-ring widths of
4.7 mm yr-1, but they carried out the study in a young experimental
plantation (30 years) under full sunlight conditions, which justifies the
greater growth rate.

Previous studies describing different ecological aspects of the genus
Copaifera mentioned the individuals could live up to an age of ∼400
years (Araújo-Júnior et al., 2005; Veiga-Junior and Pinto, 2002). Based
on the total number of tree-rings identified (without crossdating), we
estimated that the sampled trees are between 90 and 200 years old
(average=134, DP =±34). We carried out our study in the best-
preserved area of the C. lucens distribution, where the oldest trees of
this species are probably found. According to Brienen et al. (2016),
tropical tree species rarely attain ∼500 years, with a typical average
age being about 200 years. Since many species of Copaifera are con-
sidered long-lived climax species, ∼200 years old is a feasible lifespan
for this species.

3.2. Crossdating and chronology building

We crossdated the last 47 years of 20 trees, with six trees being
poorly correlated with the master chronology. We used 70% of the trees
(14 out of 20) to build the chronology and the mean correlation within
trees was rint= 0.52 (Table 1). Beside this, we could use only the in-
ternal mean of two of these trees, and for 12 of them we had sufficiently
high correlations with the master chronology using only one core per
tree (Fig. 5). Brienen and Zuidema (2005) also rejected a rather high
percentage of series to manage quality control in a study carried out in
the Bolivian rainforest. We expected to enhance the chronology var-
iance related to changes in climatic conditions by selecting the best
radii correlations and sensitivity.

The mean correlation between trees was rint= 0.45. Grissino-
Mayer (2001) suggested a threshold for inter-series correlations above
rint= 0.50, but this implies considerations such as species, geographic
location, and regional climate. In the case of lowland tropical forests,
trees show less climatic sensitivity when compared with boreal and
temperate forests (Payette and Filion, 2010; Perone et al., 2016;
Schweingruber, 1988). Therefore, the inter-series correlation found in
this study may be enough to emphasize the synchronism between trees
of the same site. MSI above 0.40 also highlights the climate sensitivity
(Grissino-Mayer, 2001). Similar values to correlation (r = 0.49) and
MSI (0.47) was found to C. langsdorffii in the same site (Costa et al.
2015), which may represent the dendrochronological characteristic of
the genus in this region. A MSI value of 0.47 in our study (Table 1)
shows high sensitivity and high-frequency variability, which greatly
increases the difficulty in dating because of the frequency of micro rings
next to very wide rings (Pumijumnong et al., 1995; Speer, 2010). The
fact that both wide and narrow ring matched between trees underpin
the climatic control on radial growth for C. lucens, although non-cli-
matic factors cannot be discarded given that we also observed se-
quences of wide rings, which are likely related to changes in stand
competition levels (Fritts, 1976). The numeric parameters for the STD
and RES individual series chronologies were similar, except for auto-
correlation, which was removed successfully in the RES chronology
(Table 1).

After standardization, the average correlation coefficient between
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trees and the average values for the classical parameters for the RES
chronology were rbar= 0.31, MSI= 0.28 and EPS=0.83 (Table 1).
These values varied across the tree’s time span (Fig. 5). The comparison
between different periods allowed us to identify the best correlation
related to growth limitation due to climatic factors as opposed to site
factors (Fritts, 1976). Previous correlation values found in tropical
environments between trees in tropical forests ranges between 0.19 and
0.38 (Oliveira et al., 2010; Pumijumnong et al., 1995); but Stahle
(1999) found values of 0.49 and 0.56 for Pterocarpus angolensis DC.
growing in seasonal dry forests in Africa and Heinrich and Banks (2005)
showed intercorrelation of 0.45 for Toona ciliata M. Roemar in Aus-
tralia. These values show strong evidence that there are common

factors (regional climate) acting on tree growth. By comparison, the
rbar value we found in this study evidences a moderate growth syn-
chronism among trees.

The mean MSI was approximated from that reported in studies
carried out in tropical forests in Australia, Asia and South America
(Chowdhury et al., 2016; Heinrich and Banks, 2005; Reis-Ávila and
Oliveira, 2017). In general, the correlation value we found is considered
moderate. On the other hand, Taynik et al. (2016) found MSI of 0.32 at
the upper treeline sites in the Russian mountains. Species in their dis-
tribution range, especially in treelines, are theoretically the most sen-
sitive to climate (Fritts, 1976). Considering the complexity of tropical
forest (e.g., wood anatomy features, community diversity and

Fig. 3. A – Monthly data for temperature (dashed line) and precipitation (full line) (1976–2012). B – Estimated monthly data for the Standardized Precipitation
Evapotranspiration Index (SPEI) (1976–2012); C – bi-monthly SPEI and D – four-monthly SPEI.
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Fig. 4. Wood cross section of Copaifera lucens. A – Well-marked annual rings delimited by axial marginal parenchyma (white arrows heads) associated with secretory
canals (thin red arrows). B – wedging rings (black arrow head) and false rings (arrow heads filled white). Magnification: A= 1.6× and B=1.0×.

Table 1
Statistical characteristics of standard ring-width index chronology of Copaifera lucens from Tabuleiros Atlantic Forest.
STD= standard chronology; RES= residual chronology.

Parameter Values

Time crossdating 1966-2012 (47 years)
Mean length of series (year) 35 years (Min= 23; Max=0.47; SD=7)
Trees/cores dated/cores crossdated 20/50/36
Trees/cores master chronology 14/16
Individual series statistics
Mean tree ring width (mm) 2.25 (Min=1.54; Max= 3.44; SD = ± 1.06mm)
Mean sensitivity index (MSI) 0.47 (Min=0.28; Max= 0.58; SD =±0.11)
Intercorrelation within tree-series (rint) 0.52 (Min=0.33; Max= 0.77; SD =±0.19)
Intercorrelation between tree-series (rint) 0.45 (Min=0.36; Max= 0.56; SD =±0.05)
Standardized chronology statistic
STD mean correlation between series (rbar) 0.35 (Min=0.01; Max= 0.75; SD =±0.16)
RES mean correlation between series (rbar) 0.31 (Min = -0.04; Max= 0.70; SD =±0.17)
Standard error (SE) STD/RES 0.018 / 0.018
Mean expressed population signal STD/RES 0.85 / 0.83
Mean sensitivity index STD/RES 0.30 / 0.28
Second-order autocorrelation STD/RES 0.08 (SD =±0.13) / -0.02 (SD =±0.05)

Fig. 5. A - Individual ring width series of Copaifera lucens (gray lines) and their mean curve (black line) from “Tabuleiros” Atlantic Forest in Brazil. B - RES
chronology (black line) of C. lucens and 21 years smoothing curve (dotted line). The area in light gray shows sample depth over the analysis period.
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competition) our results for MSI represent a relevant sensitivity.
The mean EPS value for RES chronology was slightly below the

thresholdof 0.85 suggested Wigley et al. (1984), whereas that EPS
threshold was overcome (∼0.88) for most of the periodconsidered to
assess growth-response to climatic conditions (Fig 5). Sample size af-
fects the EPS value (Briffa and Jones et al., 1990; Cook and Kairiukstis,
1990; Fritts, 1976; Mérian et al., 2013; Speer, 2010; Wigley et al., 1984)
and, for this reason, this parameter has been widely used as an indicator
of sample adequacy (e.g., Brienen et al., 2010; Heinrich and Banks,
2005; Venegas-González et al., 2016). This threshold has been the
subject of new discussions among dendrochronologists (Briffa and
Jones et al., 1990; Buras, 2017; Mérian et al., 2013). For Briffa and
Jones et al., 1990, no specific EPS value can determine whether the
chronology is suitable for dendroclimatic analysis, while Buras (2017)
suggested that the threshold presented by Wigley et al. (1984) actually
refers to the subsample signal strength rather than the total sample size.
In this regard, Campelo et al. (2007) used the subsample signal strength
to establish the reliable estimate of the mean chronology, since in their
study the sample depth declines in the early portions of chronology,
then subsample becomes important.

3.3. Growth-response to climatic conditions

Our study showed a strong influence of the climatic regional con-
ditions on the radial growth of C. lucens during the late rainy season,
which extends from mid-summer (February) to early autumn (April)
(Fig. 6). The correlation coefficient between the RES chronology and
the SPEI1 showed high positive values for February of the current year
(r = 0.66, Fig. 6 A), while SPEI2 for February (r=0.49) and March
(r=0.58, Fig. 6 B), and SPEI4 for March (r=0.53) and April (r=0.51,
Fig. 6C). These results evidence that drought in the middle of summer
(SPEI1) reduces significantly the wood production of C. lucens. Previous
studies in tropical forests showed significant and positive correlation
coefficients for the rainy season, with values ranging from 0.28 to 0.66
(Brienen and Zuidema, 2005; Chowdhury et al., 2016; Worbes, 1999).
Chowdhury et al. (2016) show that the annual and monsoon pre-
cipitation mainly influence the tree growth of Heritiera fomes Buch.-
Ham and it can be applied as an indicator for monsoon precipitation
variations in Bangladesh. Strong positive and significant (r=0.40)
correlation with the rainy season (November to June) was also found
for Bertholletia excelsa Bonpl. growing in a seasonal site in the Amazon
(Schöngart et al., 2015). In southeastern Atlantic Forest, recent den-
drochronological studies corroborated the positive association between
precipitation and tree growth (Brandes et al., 2011; Latorraca et al.,
2015; Souza et al., 2016), underpinning the applicability of den-
drochronology in tropical regions. Our study adds to this evidence
about the dendrochronological potential of tropical species and en-
courages that many other species to be tested. Besides the crossdating,
the strong climatic signal present in the rings of C. lucens also supports
the hypothesis of the annual nature of the growth rings (crossdating r=
0.31; SPEI1 r = 0.66 to SEPI4 r = 0.51).

The growing season in the TAF is presumed to extend from October
to December (early growing season) and from January to April (late
growing season). Most of the studies in tropical forests show the in-
fluence of rainfall in the early rainy season (Boninsegna et al., 2009;
Brienen and Zuidema, 2005; Pumijumnong et al., 1995; Worbes, 1999).
Worbes (1999) considers that the cambial activity in the tropics is high
during the rainy season and decreases near the end of the rainy season
or immediately after the beginning of the dry season. In the case of C.
lucens, we observed that February is the drier month in the rainy season
(Fig. 1C). Moreover, flowering starts in February for this species (Re-
serva Natural da Vale, unpublished data), being this an activity that
demands high energetic investment (Evert, 2014). In this sense, an
explanation of the importance of rainfall in the middle of summer (late
season) is because it matches with the initial period of flowering in C.
lucens, which can express a tradeoff between flowering and radial

growth under drought-stress, as it was previously observed by Borchert
(1994). By evaluating primary production, Brando et al. (2008) also
noted that wood production is the more sensitive aboveground com-
ponent to water deficit. However, when considering a prolonged period
of drought (SPEI4), we observed that rainfall throughout the late
growing season period is the most important factor. In this regard, this
species could be used as a proxy to investigate the duration of dry
periods.

The strength of the linear correlation between tree growth and
February SPEI1 can be observed over the time-span (Fig. 7). We noticed
growth reductions in 1981 (34%), 1994 (49%), 1998 (34%), 2000
(36%) and 2009 (31%). These years matched with the SPEI1 calculated
for the respective years, except for 1981, which was a wet year. Severe
droughts episodes were registered at the study area in 1987− 1989,

Fig. 6. Correlation between RES chronology and Standardized Precipitation
Evapotranspiration Index (SPEI) (1976–2012). Correlation between tree-ring
width index and –A– monthly, –B– bi-monthly and –C– four-monthly SPEI.
Columns in dark blue indicate month with significance levels at p < 0.05. Grey
lines delimit the 95% confidence interval. Light-blue rectangles show the esti-
mated growth season period. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article).
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1996− 1999 and 2007− 2008, including fires in the summer-autumn
(1999) near the study site (Gazeta-online, 2015; Rolim et al., 2016;
Víncens et al., 2003). Monthly precipitation during the first periods was
below 100mm, while values up to 60mm occurred in the subsequent
ones in February. In this regard, C. lucens seems to be very sensitive to
precipitation below 60mm (Fig. 7). It is important to note that 1994
(the negative pointer year with the greatest reduction of growth) had a
very low precipitation in January and February (4.40 and 7.20mm,
respectively). Therefore, we can conclude that C. lucens radial growth is
sensitive to drought in cases of extreme water deficit (< 37mm) during
the late growing season, with growth reductions reaching up to 49%.
One possible explanation for the pointer year that occurred under wet
conditions in 1981 is that non-climatic exogenous factors acting in the
community surpassed the climatic effect (Cook, 1987; Fritts, 1976).

This study presents the first chronology of growth rings for C. lucens,
which we explored, in a pioneering way, the dendroclimatic signals in a
tropical seasonal forest of the “Tabuleiros” Atlantic Forest in south-
eastern Brazil. The fact that long-lived Copaifera lucens has annual rings
hints a great potential for dendrochronological studies, which could be
used to investigate past drought events in tropical regions. Moreover,
low rainfall during the second half of the growing season (January-
April) was found to be linked to reduced radial growth. Thus, our in-
vestigation suggests that wood production in C. lucens would be nega-
tively affected in the event of decreasing precipitation regimes in South
America, as it was predicted by climate change projections (IPCC,
2014). This climatic response may be similar for other wood species
endemic to the Brazilian Atlantic Forest whose environmental restric-
tions are greater in relation to the widely distributed species. In this
forest, ∼ 55% of the trees are endemic (Flora do Brasil 2020, 2017),
which might significantly affect the ability of this forest to sequestrate
carbon. Yet, given the high complexity encountered during crossdating
due to frequent narrow and false rings, we recommend that further
investigation dealing with C. lucens should involve larger collected
cores per tree, as well as a higher number of sampled trees.
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