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Materials and Methods 

 

Characteristics of the study sites 

 

We restricted our study to arid, semi-arid and dry-subhumid ecosystems (“drylands” 

hereafter), defined as sites with an aridity index (precipitation/potential 

evapotranspiration) between 0.05 and 0.65 (35). Original field data were gathered at 224 

sites located in 16 countries from all continents except Antarctica (Argentina, Australia, 

Brazil, Chile, China, Ecuador, Iran, Israel, Kenya, Mexico, Morocco, Peru, Spain, 

Tunisia, United States of America and Venezuela, map S1). Site selection aimed to 

capture as much as possible the wide variety of abiotic (climatic, soil type, slope) and 

biotic (type of vegetation, total cover, species richness) features characterizing dryland 

ecosystems while keeping the total number of sites at a manageable size (map S1). To 

obtain data as representative as possible of “real world” ecosystems, we did not limit our 

survey to pristine or unmanaged ecosystems. The sites surveyed encompass a wide range 

of human uses, ranging from those with very low human impacts over recent time scales 

(e.g. National Parks and other protected areas) to those where human activities such as 

grazing, grass fiber/wood collection and game hunting are currently, or have been 

recently, carried out. However, we excluded areas devoted to horticulture, occupied by 

riparian/coastal ecosystems, recently engineered (e.g. planted or recently restored areas) 

or used for other human activities that have completely removed their vegetation and 

altered their geomorphologic characteristics (e.g. infrastructure/mining).  

To ensure that all the sites surveyed had an index of aridity below 0.65, we used 

cartography available at the global scale from the United Nations Food and Agriculture 

Organization (FAO, http://www.fao.org/geonetwork/ srv/en/main.home). This 

information was complemented with more precise aridity maps (e.g. 

http://www.cazalac.org/mapa_za_gm_2011.html for Central and South America) and 

with available local climatic data. Standardized climatic data from all the sites were 

obtained from Worldclim (www.worldclim.org), a high resolution (30 arc seconds or ~ 

1km at equator) database based on a high number of climate observations and 

topographical data (see 36 for details). Mean annual precipitation and annual mean 

temperature of the study sites span the entire range found in dryland areas (excluding 

hyper arid areas, which usually have little or no perennial vegetation, 37), and varied 

from 66 mm to 1219 mm, and from -1.8ºC to 27.8ºC, respectively (map S1). All the sites 

included in this study experience high seasonal variability in rainfall and seasonal 

drought, which varies in intensity and duration depending on location. The range of soil 

types present at the studied sites is also large, including more than 25 categories from the 

FAO classification (38) and encompassing all main soil types present in drylands (map 

S1). Slope values ranged between 0.2º and 28º (Database S1). To minimize the potential 

effects of different microclimates promoted by slope aspect, which can be very important 

in drylands (39-44), all sites that had slope values > 2º were located on SE-SW and NE-

NW facing slopes in the Northern and the Southern hemispheres, respectively. Elevation 

varies between 69 m and 4668 m a.s.l. (Database S1). The sites surveyed encompass a 

wide variety of the representative vegetation physiognomies found in drylands 
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(grasslands, shrublands, savannas and open woodlands with shrubs, fig. S1). Perennial 

plant cover also varied widely, and ranged between 3% and 83%.  

 

Field sampling  

 

Data collection took place between February 2006 and December 2010, and all 

researchers in our global study used a standardized sampling protocol. At each site, we 

established a 30 m × 30 m plot representative of the vegetation present in that area. In the 

upper left corner of each plot, we located one 30 m transect oriented downslope for the 

vegetation survey. Three parallel transects of the same length, spaced 8 m apart across the 

slope, were added. The cover of perennial vegetation was measured in each transect using 

the line-intercept method (45). Site estimates were obtained by averaging the values 

registered in the four transects sampled. We also placed 20 contiguous quadrats (1.5 m × 

1.5 m) in each transect and visually estimated the cover of each perennial vascular plant 

present. We restricted our study to perennial plants because they are instrumental in 

maintaining ecosystem functioning and preventing desertification in drylands (37, 46). 

Moreover, annual plant composition in drylands shows a high degree of intra- and inter-

annual variability (e.g. 37, 47). Thus, we did not include these annual species in our 

observational design to avoid confounding effects in the differences on multifunctionality 

among study sites derived from sampling “incomplete” communities depending on the 

time of the year and/or year sampled. The total number of perennial species found in the 

80 quadrats was used as an effort-standardized estimator of species richness. Strictly 

speaking, our data give us a measure of “species density” rather than richness (see 48 for 

a detailed discussion), but we refer to “species richness” throughout the text because this 

is the term commonly used in the biodiversity-ecosystem functioning literature (e.g. 49). 

Our surrogate of richness was highly correlated with the total number of species found in 

the 30 m × 30 m plot, as indicated from detailed surveys carried out at a subset of the 

sites sampled (fig. S2). From our survey we also obtained other diversity metrics, such as 

the exponential of the Shannon index and the inverse of the Simpson index (50). 

Soils were sampled during the dry season in most of the sites using a stratified 

random procedure. At each plot, five 50 cm × 50 cm quadrats were randomly placed 

under the canopy of the dominant perennial vegetation element and in open areas devoid 

of perennial vegetation. A composite sample consisting of five 145 cm
3
 soil cores (0-7.5 

cm depth) was collected from each quadrat, bulked and homogenized in the field. When 

more than one dominant plant species was found, samples were also collected under the 

canopies of five randomly selected individuals of the co-dominant species. Thus, the 

number of soil samples varied between 10 and 15 per site (over 2600 samples were 

collected). After field collection, the soil samples were taken to the laboratory, where 

they were sieved (2 mm mesh), air-dried for one month and stored for laboratory 

analyses.  

 

Assessment of ecosystem functions: rationale, variables measured and laboratory 

methods 

 

We obtained data on 14 soil variables related to carbon (C), nitrogen (N) and 

phosphorus (P) cycling: nitrate (NO3
-
-N) and ammonium (NH4

+
-N) availability, organic 
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C, total N, available inorganic P, aminoacids, proteins, pentoses, hexoses, aromatic 

compounds, phenols, potential N transformation rate and the activity of two extracellular 

enzymes, β-glucosidase and phosphatase. These variables measure either “true” 

ecosystem functions (sensu 51, e.g. potential N transformation rate) or are key 

properties/processes (sensu 52, e.g., organic C, total N and soil enzymes), which together 

constitute a good proxy of nutrient cycling, biological productivity, and buildup of 

nutrient pools. Variables such as these have been used in previous studies of ecosystem 

functioning and multifunctionality (e.g. 53-57), and are considered to be critical 

determinants of ecosystem functioning in drylands (see 37 for a review). For simplicity, 

all of these variables are hereafter called ecosystem functions (54). Most of these 

functions are also considered to be supporting ecosystem services, as other types of 

ecosystem services depend on them (58-60). 

All soil samples were analyzed for each of the 14 ecosystem function indicators 

listed above. These analyses were carried out with dry samples for logistical reasons, as 

the large number of soil samples gathered made the analysis of fresh soil samples 

impossible. Previous studies have found that in drylands such as those we studied, air 

drying and further storage of soils does not appreciably alter the functions of interest in 

this study (61-62). Indeed, this storage approach is commonly used when analyzing 

physical and chemical soil properties in dryland environments worldwide (e.g., 57, 63-

65). It is also important to note that our sampled soils would have remained dry for a 

large portion of the year (e.g. 66-69), and that most samples were collected when the soil 

was in this dry state. Thus, the potential bias induced by our drying treatment is expected 

to be minimal. 

To avoid problems associated with the use of multiple laboratories when analyzing 

the soils from different sites, and to facilitate the comparison of results between them, 

dried soil samples from all the countries were shipped to Spain for analyses. All the 

analyses for organic C, available P and enzymatic activities were carried out at the 

laboratory of the Biology and Geology Department, Rey Juan Carlos University 

(Móstoles, Spain). Analyses of total N were carried out at the University of Jaén (Jaén, 

Spain). The remaining soil analyses were carried out at the laboratory of the Department 

of Physical, Natural and Natural Systems, Pablo de Olavide University (Seville, Spain).  

Organic C was determined by colorimetry after oxidation with a mixture of 

potassium dichromate and sulfuric acid (70). Total N was obtained using a CN analyzer 

(Leco CHN628 Series, Leco Corporation, St Joseph, MI, USA). Available P was 

measured following a 0.5M NaHCO3 (pH: 8.5) extraction (71). Soil extracts in a ratio of 

1:5 were shaken in a reciprocal shaker at 200 rpm for 2 h. An aliquot of the centrifuged 

extract was used to the colorimetric determination of P inorganic available (PO4
-3), based 

on the reaction with ammonium molybdate and development of the “Molybdenum Blue” 

color (72); the pH of the extracts was adjusted with 0.1N HCl when necessary. 

Phosphatase activity was measured by determination of the amount of p-nitrophenol 

(PNF) released from 0.5 g soil after incubation at 37 ºC for 1 h with the substrate p-

nitrophenyl phosphate in MUB buffer (pH 6.5; 73). The activity of β-glucosidase was 

assayed following the procedure for phosphatase, but using p-nitrophenyl-β-D-

glucopyranoside as substrate and Trishydroxymethyl aminomethane instead of NaOH 

when preparing the buffer (74). The remaining soil variables were measured from K2SO4 

0.5 M soil extracts in a ratio 1:5. Soil extracts were shaken in an orbital shaker at 200 rpm 
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for 1 h at 20ºC and filtered to pass a 0.45-µm Millipore filter (75). The filtered extract 

was kept at 2 ºC until colorimetric analyses, which were conducted within the 24 h 

following the extraction. Sub-samples of each extract were taken for measurements of 

aromatic compounds, phenols, pentoses, hexoses, proteins and aminoacids according to 

Chantigny et al. (76).  Ammonium (NH4
+
-N) and nitrate (NO3

-
-N) concentrations were 

also measured for each K2SO4 extract subsample. Ammonium concentration was directly 

estimated by the indophenol blue method using a microplate reader (77). Nitrate was first 

reduced to NH4
+-N with Devarda alloy, and its concentration was determined by the 

indophenol blue method. Nitrate concentration in the extracts was calculated as the 

difference between Devarda-incubated and unincubated samples. Potential N 

transformation rate was measured by determination of total K2SO4-extractable N before 

and after incubation in the laboratory at 80% of field water holding capacity and 30ºC for 

14 days (78). 

 

Abiotic variables measured: rationale and laboratory/field methods  

 

The coordinates and elevation of each plot were recorded in situ with a portable 

Global Positioning System, and were standardized to the WGS84 ellipsoid for 

visualization and analyses. The use of elevation as an environmental variable has been 

criticized because it may confound ecosystem attributes physically linked to altitude in 

terms of distance (e.g., atmospheric pressure and temperature) and others that are not 

(e.g. moisture, hours of sunshine, wind, and human activities, 79). However, we included 

it in our analyses because given the important range found in this variable within our 

dataset (from 69 m a.s.l. to almost 5000 m a.s.l.), it may encapsulate microclimatic 

features of the sites that are not properly captured by the global interpolations used. Slope 

angle was measured in situ with a clinometer. This variable is an important driver of the 

hydrological behavior of drylands, as it strongly influences infiltration, water availability 

and run-on/run-off processes in these ecosystems (e.g., 80-83). 

In addition to the ecosystem functions listed in the preceding section, other soil 

variables were measured at the laboratory of the Rey Juan Carlos University. Soil pH was 

measured in all the soil samples with a pH meter, in a 1: 2.5 mass: volume soil and water 

suspension. Soil texture was measured in two/three composite samples per site, as 

preliminary analysis revealed that within-site variability was very low. One composite 

sample each per microsite (open areas or soil under the canopy of the dominant perennial 

plants) and site were analyzed for sand, clay and silt content according to Kettler et al. 

(84). The three textural variables measured (sand, clay and silt) were highly 

intercorrelated (Spearman ρsand-silt = -0.966, P < 0.001; Spearman ρsand-clay = -0.562, P < 

0.001; Spearman ρsilt-clay = 0.365, P < 0.001). Thus, we selected for further analyses the 

content of sand, which has been found to play key roles in controlling water availability, 

community structure and biogeochemical processes in drylands (85-88). This variable 

was also correlated with pH in our database (Spearman ρ = -0.229, P = 0.001), and thus 

pH was not used in subsequent analyses.  

A total of 21 climatic variables related to different temperature and rainfall 

characteristics of the study sites were extracted from the Worldclim global database (see 

www.worldclim.org for details). In addition, we obtained values of the aridity index from 

another database using the data interpolations provided by Worldclim (89; 
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http://www.cgiar-csi.org/data/climate/item/51-global-aridity-and-pet-database). We first 

explored the correlations among these climatic descriptors, and excluded 11 variables that 

were strongly correlated (Pearson´s r > 0.85) with the remaining variables (table S1). We 

then conducted a principal component analysis (PCA) using a correlation matrix and a 

Varimax rotation with the remaining 10 variables (annual mean temperature, mean 

diurnal temperature range, temperature seasonality, maximum temperature of the 

warmest month, mean temperature of the wettest quarter, mean temperature of the driest 

quarter, mean annual precipitation, precipitation seasonality [coefficient of variation of 

monthly precipitation], precipitation of the driest quarter and precipitation of the coldest 

quarter). All the components that had eigenvalues > 1 were retained for further analyses 

(90). Four components of this PCA had eigenvalues greater than one (Component 1 = 

3.46, Component 2 = 2.43, Component 3 = 1.34, and Component 4 = 1.14), explaining 

over 84% of the variance in the data (Component 1 = 34.64%, Component 2 = 24.33%, 

Component  3 = 13.40%, and Component 4 = 11.42%). Mean annual precipitation (r = 

0.910), precipitation in the coldest quarter (r = 0.791) and temperature seasonality (r = -

0.766) showed the highest correlations with the first component of this PCA. The second 

component of this PCA had the highest correlation with the mean temperature of the 

driest quarter (r = 0.901) and the mean diurnal temperature range (r = -0.726). The 

seasonality in precipitation (r = -0.924) and the precipitation in the driest quarter (r = 

0.946) were the climatic features most correlated with the third components, while the 

fourth component of the PCA was strongly correlated to annual mean temperature (r = 

0.682) and the mean temperature of the wettest quarter (r = 0.884). We consider it 

preferable to use PCA components over these climatic variables in our analyses (see 

below) because these components are orthogonal, while variables such as annual 

temperature and precipitation, and mean temperature and precipitation in the driest 

quarter show an important degree of correlation among them (see table S1). This 

approach enables us to distinguish the unique effects of different variables, and is also 

commonly employed in studies working at regional, continental and global spatial scales 

and dealing with multiple, highly intercorrelated climatic variables (e.g., 91-94).     

 

Assessment of ecosystem multifunctionality: rationale, approach followed and 

comparison with alternative approaches 

 

We focused our analyses on ecosystem multifunctionality, i.e. the ability of the 

ecosystem to maintain multiple functions simultaneously (49, 51, 55, 95). Most of the 

ecosystem functions evaluated are involved in biochemical pathways leading to the 

production of proteins and carbon structures, and thus directly linked to the maintenance 

of primary production, biomass accumulation and nutrient cycling (“ecosystem 

functioning” sensu 52). Organic C, total N and available P are good surrogates of C, N 

and P availability for plants and microorganisms in dryland ecosystems worldwide, and 

ultimately control many biogeochemical processes in drylands, as well as plant and 

microbial performance (e.g., 37, 96-98). Ammonium is considered the preferred source of 

N for bacteria and fungi (99, 100), and both NH4
+
-N and NO3

-
-N are the main source of 

N for vascular plants (101-102). Proteins are an important N input to the soil in terrestrial 

ecosystems (103-104), while aminoacids provide N sources for both plants and 

microorganisms (105-109). Phenolic compounds, hexoses, pentoses and aromatic 
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compounds are an important source of C for heterotrophic organisms in a wide variety of 

environments (76, 110-112). Similarly, soil enzyme activities catalyze limiting steps in 

organic matter degradation and are often commonly used as indicators of microbial 

nutrient demand (113). According to this rationale, and taking into account the size of the 

plots surveyed and the spatial extent of our study, we assume that the higher the values 

for the different ecosystem functions measured at a given ecosystem, the higher the 

overall ecosystem functioning at that site. It should be noted, however, that some studies 

have reported phenolic inhibition of nitrification (114, 115), albeit contrasting results are 

also commonly found in many environments (e.g. 108, 116-117). Indeed, positive 

correlations between the content of phenols and both potential N transformation rate 

(Spearman ρ = 0.634, n = 224, P < 0.001) and NO3
-
-N content (Spearman ρ = 0.396, n = 

224, P < 0.001) have been found at our study sites.  

Different approaches have been proposed to quantify ecosystem multifunctionality 

in the ecological literature. Some authors have used the average of multiple functions 

(previously standardized) as an index of ecosystem multifunctionality (55, 118). Others 

have used information criteria to identify the species that affected one or many ecosystem 

functions (53, 59, 119), or have established minimal thresholds for every function and 

then evaluated how combinations of different species affected the proportion of 

replicates/sites capable of maintaining multiple functions above such thresholds (54, 

120). The use of a multifunctionality index based on the scaled mean minus the standard 

deviation of all functions has also been proposed (121). Among these alternatives, we 

decided to use the average of multiple functions (previously standardized) as an index of 

ecosystem multifunctionality, as it provided a straightforward and easily interpretable 

measure of the ability of different communities to sustain multiple functions 

simultaneously. We acknowledge that the use of such an average may preclude a detailed 

analysis of how particular species differ in their importance for different functions (e.g., 

53, 122), and that by using this average, declines in one function can theoretically be 

compensated for by increases in one or another function (something that has been 

criticized in the past; e.g. 54). However, the extent of our global survey and the important 

differences in composition between the sites makes the identification of particular species 

that are important for different functions inappropriate, because species composition 

differs widely among regions and continents. We did not find that particular sites with 

high values of a single or a few functions had consistently low values for other functions. 

In our data set, the correlations between most ecosystem function variables were positive 

or close to 0, and the strongest negative correlation coefficient (r) between any pair of 

functions among the 224 sites was only -0.168. Moreover, the coefficient of variation 

among the functions evaluated at each site varied between only 1.24 and 2.36. Finally, 

the relatively large number of functions employed to calculate our multifunctionality 

index makes it relatively robust to outliers or atypical values.  

To obtain a quantitative multifunctionality index for each site (M), we first 

calculated the Z scores of the 14 functions evaluated, estimated at the scale of each 30 m 

× 30 m plot surveyed. These estimates were obtained by using a weighted average of the 

mean values observed in bare ground and vegetated areas, weighted by their respective 

cover at each plot. Raw data were normalized prior to these calculations; a sqrt-

transformation normalized most of the variables evaluated. Following this, the Z scores 

of the 14 variables were averaged to obtain M. This multifunctionality index follows a 
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normal distribution (Kolmogorov-Smirnof test = 0.058, df = 224, P = 0.068). We 

preferred the use of Z scores over other transformations used in the multifunctionality 

literature (e.g. division by the maximum, 118) because of their good statistical properties: 

i) average Z scores follow a normal distribution, ii) the means and variances of such 

averages are poorly correlated (r = 0.167 in our dataset), and iii) the Z scores do not 

constrain the variability found in the raw data, as do other indices that are bounded 

between 0 and 1.  

Variation in cover has been used as proxy for plant biomass and productivity in a 

wide variety of environments, including grasslands and shrublands (123-126), and as 

such could be considered as another ecosystem function. However, with the approach we 

followed, total plant cover is taken into account when estimating ecosystem functions at 

the plot scale, and thus cannot also be used as an independent variable in subsequent 

analyses. Nevertheless, we compared the multifunctionality index obtained with our plot-

level estimates (M) with an alternative index using average values of the ecosystem 

functions from bare ground areas plus total plant cover as another function. Both indices 

were strongly correlated (fig. S3). We therefore preferred to use M obtained with plot-

level estimates because these represent ecosystem functioning more realistically at the 

landscape scale (which includes both bare ground and vegetated areas), and by doing so 

we avoid overestimating the effect of plant cover. 

Prior to further analyses, and to ensure that our results were robust with respect to 

the method used to calculate ecosystem multifunctionality, we calculated two alternative 

multifunctionality indices: i) the average of multiple functions, previously standardized 

by dividing by the maximum (SD index, 118), and ii) this average minus the standard 

deviation (SDSE index, 121). The comparison between M and these alternative 

approaches revealed that all the indices were strongly related (fig. S4). Results from M 

were almost identical to those of the SD index. While highly correlated, results with the 

SDSE index showed more scatter (fig. S4). Thus, we repeated the different analyses 

conducted (described below) with both M and the SDSE index to ensure that our results 

and conclusions are robust to the choice of metric used to estimate multifunctionality.  

 

Statistical analyses 

 

We first evaluated the relationships between the richness of vascular plants and M 

using ordinary least squares (OLS) regression. In addition, and to account for potential 

effects caused by the spatial structure of the data, we also fitted the relationship between 

species richness and M using a simultaneous autorregresive (SAR) method (127), the 

SAR error model (sensu 128). This approach has been highly effective in removing 

spatial autocorrelation from residuals, while at the time minimizing time coefficient shifts 

compared to OLS regression (129). Species richness data were sqrt-transformed prior to 

regression analyses to approximate normality. Regression analyses were conducted using 

both M and similar indices conducted only with variables from the C (organic C, β-

glucosidase, pentoses, hexoses, aromatic compounds and phenols), N (NO3
-
-N, NH4

+
-N, 

total N, aminoacids, proteins, and potential N transformation rate) and P (available 

inorganic P and phosphatase) cycles. 

We then explored the relative effects and importance of species richness and 

different abiotic factors (sand content, slope, elevation and four components derived from 
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a principal component analysis of climatic data) as drivers of multifunctionality. We 

focused on species richness for this study because to date it has been the component of 

biodiversity most widely studied (49), and because other diversity metrics taking into 

account species abundance, such as the exponential Shannon´s index or the Simpson 

index, were not independent from species richness (fig. S5). Slope, elevation and species 

richness were sqrt-transformed prior to analyses to approximate normality. Separate 

analyses were conducted using M and similar indices conducted only with variables from 

the C, N and P cycles as dependent variables. All the analyses were based on linear 

regressions.  

To examine whether observed effects of species richness were important compared 

to those of abiotic factors as drivers of multifunctionality, we used a multi-model 

inference approach based on information theory (130). This approach does not rely on the 

classical approach to fitting models, based on traditional hypothesis testing, but instead 

uses information theory to assess the probability that a given model is the most 

appropriate description of the observed data. Multi-model inference approaches are 

increasingly being used and recommended when dealing with observational data 

collected over large spatial scales and environmental gradients, as in this study (e.g., 94, 

131, 132). We evaluated all possible linear regression models containing M as the 

dependent variable and the following independent variables: species richness (sqrt-

transformed), elevation (sqrt-transformed), slope angle (sqrt-transformed), sand content 

and the four components derived from the PCA of climatic data described above. The 

characteristics of our survey make the presence of spatial autocorrelation likely, since 

sites within each country are not fully independent from each other. While spatial 

autocorrelation can be a problem for significance tests, parameter estimates using OLS 

regressions are not seriously or systematically biased by residual autocorrelation in 

macroecological analyses (129, 133). However, spatial autocorrelation may still be a 

problem in multi-model approaches based on information theory, as the metrics chosen to 

select models are related to unexplained variance of the models, which can be in turn 

affected by the presence of spatial autocorrelation (134). To control for potential effects 

of spatial autocorrelation in the data, we also included latitude and longitude as 

explanatory variables in all the models (129).  

We ranked all the 255 models that could be generated with our independent 

variables according to the second-order Akaike information criterion (AICc), calculated 

as described in Fotheringham et al. (135).  The AICc of each model was then transformed 

to ∆AICc, which is the difference between AICc of each model and the minimum AICc 

found for the set of models compared. Values of ∆AICc above 7 indicate that a model has 

a poor fit relative to the “best” model (i.e. that with the lowest AICc), whereas values 

below 2 indicate that models are indistinguishable (130). The ∆AICc values were also 

used to obtain the Akaike weights of each model (wi), according to Burnham and 

Anderson (130). This parameter provides evidence that the model is actually the best 

explanatory model. Akaike’s weights were also used to define the relative importance of 

each predictor across the full set of models evaluated by summing wi values of all models 

that include the predictor of interest, taking into account the number of models in which 

each predictor appears (130). 

Exploratory analyses showed that the relationships between ecosystem 

multifunctionality and some independent variables were explained better with quadratic, 



 

 

10 

 

rather than with linear, terms (figs. S6-S9). To ensure that non-linearity was not affecting 

our conclusions, we conducted an additional model selection analysis that included 

quadratic terms for elevation, sand content and the four PCA components derived from 

climatic data. To do this, we selected the best 10 OLS models according to AICc, and ran 

them again, including the quadratic term of the relevant variables. The addition of 

latitude and longitude effectively removed most of the spatial autocorrelation found in the 

data, which was virtually nonexistent when quadratic terms were included (fig. S10A). 

However, the residuals of the best fitted model without these terms still had some 

evidence of spatial autocorrelation (fig. S10B). To further ensure that spatial 

autocorrelation was not affecting our conclusions, we conducted an additional model 

selection based on spatial regression. As with the quadratic terms, we selected the best 10 

OLS models according to AICc, and ran them again using SAR. The results of the 

analyses of our multifunctionality index conducted with both OLS, OLS with quadratic 

terms and SAR analyses were virtually identical (Table 1 in the main text, tables S2 and 

S3), and thus only the former are presented in the main text. 

We also checked for potential biases induced by the covariation between species 

richness and the different abiotic predictors included in the OLS models. For doing so, 

we calculated the variance inflation factor (VIF) between the different predictors 

included in the best and most parsimonious OLS models as an indicator for colinearity 

between these predictors. The VIF was in all cases below four (table S15), suggesting the 

absence of colinearity problems (136). 

 Correlation, PCA and OLS analyses were performed using SPSS 15.0 (SPSS Inc., 

Chicago, IL, USA). Spatial regression and multi-model analyses were carried out using 

SAM 4.0 (137). 
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Fig. S1. 

Examples of the vegetation types surveyed in this study. A = Stipa tenacissima grassland in Morocco 

(119), B = Festuca orthophylla grassland in Peru (128), C = grassland dominated by various Stipa 

and Festuca species in Argentina (2), D = Shrubland dominated by cushion shrubs (Acantholimon 

evinaceum and Acanthophyllum glandulosum) in Iran (83), E = Larrea cuneifolia shrubland in 

Argentina (18), F = Shrubland dominated by Quercus coccifera, Q. ilex and Rosmarinus officinalis 

in Spain (163), G = Shrubland dominated by Coridothymus capitatus in Israel (86), H = Mixed 
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shrubland dominated by Ericameria nauseosum  in Utah, USA (203), I = Shrubland dominated by 

Eulychnia acida in Chile (49), J = Shrubland dominated by Chamaecrista cytisoides in Brasil (37), K 

= Open woodland dominated by Eucalyptus populnea and Acacia aneura in Australia (32), and L = 

Savanna of Acacia totalis in Kenya (99). The numbers in brackets indicate the number of the study 

site in Database S1 and map S1.
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Fig. S2 

Relationship between the number of species found within the 80 1.5 m × 1.5 m quadrats 

sampled and the total number of species present within the 30 m × 30 m plot in a subset 

of the study sites surveyed. The fitted line indicate results from a linear regression (R2 = 

0.914, P < 0.001). 
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Fig. S3 

Relationships between our multifunctionality index (M), based on plot-level estimates of 

soil functions, and an alternative index made using the values from areas of bare ground 

for the same functions plus total cover of perennial vascular plants as another function. 

The fitted line indicate results from a linear regression (R
2
 = 0.932, P < 0.001). 
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Fig. S4 

Relationships between our multifunctionality index, based on the average of Z scores of 

plot-level estimates of ecosystem functions, and alternative indices based on: A) the 

average of the functions evaluated previously standardized by dividing by the maximum 

(SD index), and B) such average minus the standard deviation (SDSE index). The fitted 

lines indicate results from linear (A, R
2
 = 0.974, P < 0.001) and quadratic (B, R

2
 = 0.854, 

P < 0.001) regressions. 
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Fig. S5 

Scatter plots illustrating the dependence between species richness and two metrics of 

species diversity: the inverse of the Simpson index (upper panel) and the exponential of 

Shannon´s index (lower panel). 
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Fig. S6 

Scatter plots illustrating the relationships between the abiotic variables included in the 

models and our multifunctionality index (M). For the same relationship between M and 

species richness, see fig. 1a in the main text. 
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Fig. S7 

Scatter plots illustrating the relationships between the abiotic variables included in the 

models and an index synthesizing multiple functions related to carbon cycling (average of 

Z scores of organic C, β-glucosidase, pentoses, hexoses, aromatic compounds and 

phenols). For the same relationship between this index and species richness, see fig. 1b in 

the main text. 
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Fig. S8 

Scatter plots illustrating the relationships between the abiotic variables included in the 

models and an index synthesizing multiple functions related to nitrogen cycling (average 

of Z scores of total nitrogen, NO3
-
-N, NH4

+
-N, aminoacids, proteins, and potential 

nitrogen transformation rate). For the same relationship between this index and species 

richness, see fig. 1c in the main text. 
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Fig. S9 

Scatter plots illustrating the relationships between the abiotic variables included in the 

models and an index synthesizing multiple functions related to phosphorus cycling 

(average of Z scores of available inorganic phosphorus and phosphatase). For the same 

relationship between this index and species richness, see fig. 1d in the main text. 
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Fig. S10 

Moran´s correlogram showing the spatial autocorrelation of the original data (red line), 

the estimated values (blue line) and of the residuals (green line) of the best model fitted to 

our multifunctionality index with (A) and without (B) quadratic terms in the independent 

variables. See Table 1 and table S3 for the variables included in the models presented in 

A and B, respectively.
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Table S1. 

Pearson correlations among the climatic variables obtained from the Worldclim database (36). Values > |0.85| are in bold. 

 

AMT MDR ISO TSE MAWM MICM TAR MTWEQ MTDQ MTWAQ MTCQ 

MDR -0.359 

ISO 0.423 0.082 

TSE -0.545 0.089 -0.898 

MAWM 0.546 -0.142 -0.421 0.365 

MICM 0.927 -0.435 0.606 -0.776 0.245 

TAR -0.610 0.349 -0.825 0.962 0.308 -0.847 

MTWEQ 0.576 -0.044 0.371 -0.212 0.345 0.410 -0.213 

MTDQ 0.713 -0.481 0.055 -0.351 0.495 0.731 -0.445 -0.032 

MTWAQ 0.697 -0.360 -0.290 0.218 0.954 0.424 0.108 0.461 0.562 

MTCQ 0.919 -0.290 0.691 -0.830 0.198 0.984 -0.857 0.463 0.658 0.363 

RAI 0.425 -0.181 0.658 -0.538 -0.057 0.520 -0.541 0.415 0.175 0.037 0.535 

RAWM 0.289 -0.083 0.745 -0.565 -0.279 0.404 -0.550 0.381 -0.041 -0.161 0.446 

RADM 0.148 -0.021 -0.023 0.007 0.228 0.127 0.001 0.221 0.081 0.189 0.101 

RASE -0.157 0.005 0.377 -0.286 -0.592 -0.043 -0.283 -0.030 -0.356 -0.464 0.008 

RAWEQ 0.298 -0.074 0.754 -0.588 -0.283 0.420 -0.567 0.362 -0.015 -0.169 0.464 

RADQ 0.100 -0.053 -0.142 0.091 0.286 0.078 0.080 0.141 0.152 0.218 0.038 

RAWAQ -0.100 0.404 0.520 -0.290 -0.406 -0.069 -0.155 0.392 -0.512 -0.394 0.050 

RACQ 0.449 -0.364 0.509 -0.460 0.020 0.553 -0.531 0.214 0.338 0.140 0.518 

MTMAX 0.979 -0.160 0.465 -0.558 0.545 0.885 -0.569 0.599 0.649 0.657 0.908 

MTMIN 0.984 -0.519 0.372 -0.517 0.526 0.932 -0.626 0.536 0.745 0.706 0.897 

AI 0.076 -0.205 0.440 -0.313 -0.224 0.215 -0.334 0.156 -0.003 -0.170 0.201 

 

 

 



 

 

23 

 

Table S1. Continuation.  

RAI RAWM RADM RASE RAWEQ RADQ RAWAQ RACQ MTMAX MTMIN 

RAWM 0.902 

RADM 0.284 -0.025 

RASE -0.004 0.386 -0.724 

RAWEQ 0.915 0.991 -0.023 0.366 

RADQ 0.261 -0.094 0.955 -0.810 -0.090 

RAWAQ 0.437 0.495 0.192 0.212 0.496 0.131 

RACQ 0.798 0.773 0.019 0.112 0.789 -0.021 -0.065 

MTMAX 0.410 0.287 0.152 -0.166 0.299 0.095 -0.017 0.395 

MTMIN 0.424 0.280 0.140 -0.145 0.287 0.102 -0.168 0.481 0.927 

AI 0.908 0.818 0.300 -0.013 0.825 0.321 0.422 0.690 0.036 0.109 

AMT = annual mean temperature, MDR = mean diurnal temperature range, ISO = Isothermality, calculated as 100*(annual mean 

temperature/[maximum temperature of the warmest month - minimum temperature of the coldest month]), TSE = temperature seasonality (standard 

deviation *100), MAWM = maximum temperature of the warmest month, MICM = minimum temperature of the coldest month, TAR = temperature 

annual range (maximum temperature of the warmest month - minimum temperature of the coldest month), MTWEQ = mean temperature of the 

wettest quarter, MTDQ = mean temperature of the driest quarter, MTWAQ  = mean temperature of the warmest quarter, MTCQ = mean temperature 

of the coldest quarter, RAI = mean annual precipitation, RAWM = precipitation of the wettest month, RADM  = precipitation of the driest month, 

RASE = precipitation seasonality (coefficient of variation of monthly precipitation), RAWEQ = precipitation of the wettest quarter, RADQ = 

precipitation of the driest quarter, RAWAQ = precipitation of the warmest quarter, RACQ = precipitation of the coldest quarter, MTMAX  = mean of 

maximal temperatures, MTMIN = Mean of minimal temperatures, and AI = aridity index (annual rainfall/annual potential evapotranspiration).
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Table S2. 

Summary results of the modelling of ecosystem multifunctionality (M index) using 

ordinary least squares linear regression and quadratic terms in selected independent 

variables (sand content, elevation and the four components of a principal component 

conducted with climatic data), to account for potential effects of non-linear relationships 

between M and these variables (see fig. S6). The same models presented in Table 1 of the 

main text, ranked according to its second-order Akaike information criterion (AICc), are 

presented. The second model of the table is the most parsimonious model; the same 

model without species richness had R
2
 = 0.611, AICc = 261.71, and ∆AICc = 8.21. 

 

Independent variables R
2
 AICc ∆AICc 

C1, C1
2
, C2, C2

2
, C4, C4

2
, SA, SA

2
, SR, SL, EL, 

EL2, LA, LO 

0.637 253.00 0.00 

C1, C12, C4, C42, SA, SA2, SR, SL, EL, EL2, LA, 

LO 

0.629 253.50 0.50 

 

C1, C1
2
, C2, C2

2
, C3, C3

2
, C4, C4

2
, SA, SA

2
, SR, 

SL, EL, EL
2
, LA, LO 

0.638 257.33 4.33 

C1, C1
2
, C3, C3

2
, C4, C4

2
,SA, SA

2
, SR, SL, EL, 

EL
2
, LA, LO 

0.630 257.60 4.60 

 

C1, C1
2
, C2, C2

2
, SA, SA

2
, SR, SL, EL, EL

2
, LA, 

LO 

0.589 276.54 23.54 

C4, C4
2
, SA, SA

2
, SR, SL, EL, EL

2
, LA, LO 0.579 277.47 24.47 

C2, C2
2
, C3, C3

2
, C4, C4

2
, SA, SA

2
, SR, SL, EL, 

EL
2
, LA, LO 

0.594 278.34 25.34 

C1, C1
2
, C3, C3

2
, SA, SA

2
, SR, SL, EL, EL

2
, LA, 

LO 

0.584 279.21 26.21 

 

∆AICc = difference between the AICc of each model and that of the best model, C1 = first 

component of a principal component analysis conducted with climatic data (PCAclim, 

mainly related to mean annual precipitation, r = 0.910), C2 = second component of 

PCAclim (mainly related to mean temperature of the driest quarter, r = 0.901), C3 = third 

component of PCAclim (mainly related to precipitation in the driest quarter, r = 0.946), C4 

= fourth component of PCAclim (mainly related to annual mean temperature [r = 0.682] 

and the mean temperature of the wettest quarter, r = 0.884), SA = sand content, SR = 

species richness (sqrt-transformed), SL = slope (sqrt-transformed), and EL = elevation 

(sqrt-transformed), LA =latitude, and LO = longitude. Superscripts indicate quadratic 

terms. 
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Table S3. 

Summary results of the modelling of ecosystem multifunctionality (M index) using 

spatial simultaneous autorregression. The same models presented in Table 1 of the main 

text, ranked according to its second-order Akaike information criterion (AICc), are 

presented. The first model of the table is the most parsimonious; the same model without 

species richness had R
2
 = 0.475, AICc = 316.88, and ∆AICc = 7.75. Rest of legend as in 

table S2. 

 

Independent variables R
2
 AICc ∆AICc 

C4, SA, SR, SL, EL 0.498 309.13 0 

C2, C3, C4, SA, SR, SL, EL 0.497 313.81 4.68 

C1, C4, SA, SR, SL, EL 0.409 347.86 38.73 

C1, C2, C4, SA, SR, SL, EL 0.406 350.98 41.85 

C1, C3, C4, SA, SR, SL, EL 0.402 352.57 43.44 

C1, C2, C3, C4, SA, SR, SL, EL 0.400 355.32 46.19 

C1, C2, SA, SR, SL, EL 0.287 389.75 80.62 

C1, C3, SA, SR, SL, EL 0.284 390.52 81.39 
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Table S4. 

Best-fitting regression models of the C cycling index using ordinary least squares 

regression. Of all 255 possible models, the best ten models are presented, ranked 

according to the second-order Akaike information criterion (AICc). The first model of the 

table is the most parsimonious; the ∆AICc of the same model without species richness is 

indicated in bold. wi = Akaike weights. Rest of legend as in table S2. 

 

Independent variables R
2
 AICc ∆AICc wi 

C3, C4, SA, SR, SL, EL, LA, LO 0.600 320.156 0 0.298 

C2, C3, C4, SA, SR, SL, EL, LA, LO 0.603 320.644 0.488 0.234 

C1, C2, C3, C4, SA, SR, SL, EL, LA, LO 0.606 321.163 1.007 0.180 

C1, C3, C4, SA, SR, SL, EL, LA, LO 0.601 321.607 1.450 0.145 

C1, C2, C3, C4, SA, SR, SL, LA, LO 0.598 323.486 3.330 0.056 

C2, C3, C4, SA, SR, SL, LA, LO 0.590 325.583 5.427 0.020 

C3, C4, SA, SL, EL, LA, LO 0.585 326.134 5.978 0.015 

C2, C4, SA, SR, SL, EL, LA, LO 0.588 326.782 6.626 0.011 

C4, SA, SR, SL, EL, LA, LO 0.583 326.842 6.685 0.011 

C1, C3, C4, SA, SL, EL, LA, LO 0.586 327.907 7.751 0.006 
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Table S5. 

Best-fitting regression models of the N cycling index using ordinary least squares 

regression. Of all 255 possible models, the best ten models are presented, ranked 

according to the second-order Akaike information criterion (AICc). The first and second 

models of the table are the best and most parsimonious models, respectively; the same 

models without species richness had R
2
 = 0.420, AICc = 387.502, ∆AICc = 20.344, and 

R
2
 = 0.452, AICc = 374.698, ∆AICc = 7.54, respectively. wi = Akaike weights. Rest of 

legend as in table S2. 

 

Independent variables R
2
 AICc ∆AICc wi 

C1, C4, SA, SR, SL, EL, LA, LO 0.481 367.158 0 0.270 

C4, SA, SR, SL, EL, LA, LO 0.475 367.544 0.386 0.222 

C2, C4, SA, SR, SL, EL, LA, LO 0.477 368.965 1.807 0.109 

C1, C2, C4, SA, SR, SL, EL, LA, LO 0.481 369.186 2.028 0.098 

C1, C3, C4, SA, SR, SL, EL, LA, LO 0.481 369.267 2.110 0.094 

C3, C4, SA, SR, SL, EL, LA, LO 0.475 369.728 2.570 0.075 

C2, C3, C4, SA, SR, SL, EL, LA, LO 0.477 371.153 3.995 0.037 

C1, C2, C3, C4, SA, SR, SL, EL, LA, LO 0.481 371.306 4.149 0.034 

C2, C4, SA, SL, EL, LA, LO 0.461 373.464 6.306 0.012 

C2, C3, C4, SA, SL, EL, LA, LO 0.464 374.224 7.067 0.008 

 

 

 

 



 

 

28 

 

Table S6. 

Best-fitting regression models of the P cycling index using ordinary least squares 

regression. Of all 255 possible models, the best ten models are presented, ranked 

according to the second-order Akaike information criterion (AICc). wi = Akaike weights. 

Rest of legend as in table S2. 

 

Independent variables R
2
 AICc ∆AICc wi 

C2, C4, SA, EL, LA, LO 0.378 394.669 0 0.211 

C2, C4, SA, SR, EL, LA, LO 0.382 395.297 0.629 0.154 

C2, C3, C4, SA, EL, LA, LO 0.379 396.405 1.737 0.088 

C1, C2, C4, SA, EL, LA, LO 0.379 396.451 1.782 0.087 

C1, C2, C4, SA, SR, EL, LA, LO 0.385 396.588 1.919 0.081 

C2, C4, SA, SL, EL, LA, LO 0.378 396.785 2.116 0.073 

C2, C4, SA, SL, SR, EL, LA, LO 0.382 397.445 2.776 0.053 

C2, C3, C4, SA, SR, EL, LA, LO 0.382 397.457 2.788 0.052 

C1, C2, C3, C4, SA, EL, LA, LO 0.380 398.045 3.376 0.039 

C2, C3, C4, SA, SL, EL, LA, LO 0.379 398.464 3.795 0.032 
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Table S7. 

Summary results of the modelling of the C cycling index using spatial simultaneous 

autorregression (SAR). The same models presented in table S4, ranked according to its 

second-order Akaike information criterion (AICc), are presented. The first model of the 

table is the most parsimonious; the same model without species richness had R
2
 = 0.529, 

AICc = 355.323, and ∆AICc = 7.74. Rest of legend as in table S2.  

 

Independent variables R
2
 AICc ∆AICc 

C2, C3, C4, SA, SR, SL 0.545 347.583 0 

C2, C3, C4, SA, SR, SL, EL 0.546 349.047 1.464 

C2, C4, SA, SR, SL, EL 0.527 356.483 8.900 

C3, C4, SA, SR, SL, EL 0.525 357.217 9.634 

C3, C4, SA, SL, EL 0.517 358.910 11.327 

C4, SA, SR, SL, EL 0.507 363.191 15.608 

C1, C3, C4, SA, SR, SL, EL 0.464 386.489 38.906 

C1, C2, C3, C4, SA, SR, SL 0.463 387.022 39.439 

C1, C2, C3, C4, SA, SR, SL, EL 0.466 387.808 40.225 

C1, C3, C4, SA, SL, EL 0.453 388.822 41.239 
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Table S8. 

Summary results of the modelling of the N cycling index using spatial simultaneous 

autorregression (SAR). The same models presented in table S5, ranked according to its 

second-order Akaike information criterion (AICc), are presented. The first model of the 

table is the most parsimonious; the same model without species richness had R
2
 = 0.414, 

AICc = 388.788, and ∆AICc = 3.054. Rest of legend as in table S2.  

 

Independent variables R
2
 AICc ∆AICc 

C4, SA, SR, SL, EL 0.427 385.734 0 

C2, C4, SA, SR, SL, EL 0.427 387.990 2.256 

C3, C4, SA, SR, SL, EL 0.426 388.613 2.879 

C2, C4, SA, SL, EL 0.416 390.262 4.528 

C2, C3, C4, SA, SR, SL, EL 0.426 390.801 5.067 

C2, C3, C4, SA, SL, EL 0.413 393.478 7.744 

C1, C4, SA, SR, SL, EL 0.374 407.765 22.031 

C1, C2, C4, SA, SR, SL, EL 0.370 411.621 25.887 

C1, C3, C4, SA, SR, SL, EL 0.361 414.569 28.835 

C1, C2, C3, C4, SA, SR, SL, EL 0.359 417.485 31.751 
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Table S9. 

Summary results of the modelling of the P cycling index using spatial simultaneous 

autorregression (SAR). The same models presented in table S6, ranked according to its 

second-order Akaike information criterion (AICc), are presented. Rest of legend as in 

table S2.  

 

Independent variables R
2
 AICc ∆AICc 

C2, C4, SA, EL 0.294 421.939 0 

C2, C4, SA, SL, EL 0.290 425.294 3.355 

C2, C4, SA, SR, EL 0.290 425.323 3.384 

C2, C3, C4, SA, EL 0.284 427.120 5.181 

C2, C4, SA, SL, SR, EL 0.286 428.632 6.693 

C2, C3, C4, SA, SL, EL 0.284 429.258 7.319 

C2, C3, C4, SA, SR, EL 0.283 429.532 7.593 

C1, C2, C4, SA, EL 0.224 445.193 23.254 

C1, C2, C4, SA, SR, EL 0.219 448.781 26.842 

C1, C2, C3, C4, SA, EL 0.191 456.768 34.829 
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Table S10. 

Summary results of the modelling of the C cycling index using ordinary least squares 

linear regression and quadratic terms in some independent variables (sand content, 

elevation and the four components of a principal component analysis conducted with 

climatic data), to account for potential effects of non-linear relationships between 

multifunctionality and these variables (see fig. S7). The same models presented in table 

S4, ranked according to its second-order Akaike information criterion (AICc), are 

presented. The first model of the table is the most parsimonious; the ∆AICc of the same 

model without species richness is indicated in bold. Rest of legend as in table S2. 

 

Independent variables R
2
 AICc ∆AICc 

C1, C1
2
, C3, C3

2
, C4, C4

2
, SA, SA

2
, SR, SL, EL, 

EL2, LA, LO 

0.663 295.428 0 

C1, C12, C2, C22, C3, C32, C4, C42, SA, SA2, SR, 

SL, EL, EL2, LA, LO 

0.665 298.774 3.346 

 

C2, C2
2
, C3, C3

2
, C4, C4

2
, SA, SA

2
, SL, EL, EL

2
, 

LA, LO 

0.652 299.866 4.438 

 

C1, C1
2
, C3, C3

2
, C4, C4

2
,SA, SA

2
, SR, SL, LA, 

LO 

0.650 303.602 8.174 

C4, C4
2
, SA, SA

2
, SR, SL, EL, EL

2
, LA, LO 0.632 310.240 14.812 

C3, C3
2
, C4, C4

2
, SA, SA

2
, SR, SL, EL, EL

2
, LA, 

LO 

0.626 313.889 18.461 

 

C2, C2
2
, C4, C4

2
, SA, SA

2
, SR, SL, EL, EL

2
, LA, 

LO 

0.626 313.889 18.461 

C2, C2
2
, C3, C3

2
, C4, C4

2
, SA, SA

2
, SR, SL, EL, 

EL
2
, LA, LO 

0.634 313.906 18.478 

 

C3, C3
2
, C4, C4

2
, SA, SA

2
, SL, EL, EL

2
, LA, LO 0.624 315.005 19.577 

C1, C12, C3, C32, C4, C42, SA, SA2, SL, EL, EL2, 

LA, LO 

0.614 316.442 21.014 
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Table S11. 

Summary results of the modelling of the N cycling index using ordinary least squares 

linear regression and quadratic terms in some independent variables (sand content, 

elevation and the four components of a principal component analysis conducted with 

climatic data), to account for potential effects of non-linear relationships between 

multifunctionality and these variables (see fig. S8). The same models presented in table 

S5, ranked according to its second-order Akaike information criterion (AICc), are 

presented. The first model of the table is the most parsimonious; the same model without 

species richness had R
2
 = 0.573, AICc = 334.701, and ∆AICc = 1.367. Rest of legend as 

in table S2. 

 

Independent variables R
2
 AICc ∆AICc  

C1, C12, C2, C22, C4, C42, SA, SA2, SR, SL, EL, 

EL2, LA, LO 

0.575 336.068 0 

C1, C12, C2, C22, C3, C32, C4, C42, SA, SA2, SR, 

SL, EL, EL
2
, LA, LO 

0.577 339.596 3.528 

 

C1, C1
2
, C4, C4

2
, SA, SA

2
, SR, SL, EL, EL

2
, LA, 

LO 

0.557 340.772 4.704 

 

C1, C1
2
, C3, C3

2
, C4, C4

2
, SA, SA

2
, SR, SL, EL, 

EL
2
, LA, LO 

0.561 343.054 6.986 

C3, C3
2
, C4, C4

2
, SA, SA

2
, SR, SL, EL, EL

2
, LA, 

LO 

0.509 363.626 27.558 

 

C2, C2
2
, C3, C3

2
, C4, C4

2
, SA, SA

2
, SR, SL, EL, 

EL
2
, LA, LO 

0.514 366.047 29.979 

C2, C2
2
, C3, C3

2
, C4, C4

2
, SA, SA

2
, SL, EL, EL

2
, 

LA, LO 

0.508 366.205 30.137 

 

C4, C4
2
, SA, SA

2
, SR, SL, EL, EL

2
, LA, LO 0.491 367.089 31.021 

C2, C22, C4, C42, SA, SA2, SR, SL, EL, EL2, LA, 

LO 

0.495 369.782 33.714 

 

C2, C22, C4, C42, SA, SA2, SL, EL, EL2, LA, LO 0.496 369.880 33.812 
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Table S12. 

Summary results of the modelling of the P cycling index using ordinary least squares 

linear regression and quadratic terms in some independent variables (sand content, 

elevation and the four components of a principal component analysis conducted with 

climatic data), to account for potential effects of non-linear relationships among 

multifunctionality and these variables (see fig. S9). The same models presented in table 

S6, ranked according to second-order Akaike information criterion (AICc), are presented. 

The second model of the table is the most parsimonious. Rest of legend as in table S2. 

 

Independent variables R
2
 AICc ∆AICc 

C2, C2
2
, C3, C3

2
, C4, C4

2
, SA, SA

2
, EL, EL

2
, LA, 

LO 

0.425 390.213 0 

 

C2, C22, C4, C42, SA, SA2, EL, EL2, LA, LO 0.411 391.098 0.885 

C2, C22, C3, C32, C4, C42, SA, SA2, SR, EL, EL2, 

LA, LO 

0.428 391.453 1.240 

C2, C2
2
, C4, C4

2
, SA, SA

2
, SR, EL, EL

2
, LA, LO 0.412 392.898 2.685 

C2, C2
2
, C4, C4

2
, SA, SA

2
, SL, EL, EL

2
, LA, LO 0.411 393.352 3.139 

C2, C2
2
, C3, C3

2
, C4, C4

2
, SA, SA

2
, SL, EL, EL

2
, 

LA, LO 

0.428 393.689 3.476 

 

C1, C1
2
, C2, C2

2
, C4, C4

2
, SA, SA

2
, EL, EL

2
, LA, 

LO 

0.416 393.846 3.633 

 

C2, C2
2
, C4, C4

2
, SA, SA

2
, SL, EL, EL

2
, LA, LO 0.412 395.167 4.954 

C1, C1
2
, C2, C2

2
, C4, C4

2
, SA, SA

2
, SR, EL, EL

2
, 

LA, LO 

0.417 395.769 5.556 

C1, C1
2
, C2, C2

2
, C3, C3

2
, C4, C4

2
, SA, SA

2
, EL, 

EL
2
, LA, LO 

0.429 395.829 5.616 
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Table S13. 

Best-fitting regression models of ecosystem multifunctionality using an alternative index 

that takes into account the variation in the individual functions (SDSE index, described in 

the Materials and Methods) and ordinary least squares regression. Of all 255 possible 

models, the best ten models are presented, ranked according to the second-order Akaike 

information criterion (AICc). The first model of the table is the most parsimonious; the 

∆AICc of the same model without species richness is indicated in bold. wi = Akaike 

weights. Rest of legend as in table S2. 

 

Independent variables R
2
 AICc ∆AICc wi 

C3, C4, SA, SR, SL, EL, LA, LO 0.596 -706.873 0 0.433 

C1, C3, C4, SA, SR, SL, EL, LA, LO 0.599 -706.177 0.696 0.306 

C2, C3, C4, SA, SR, SL, EL, LA, LO 0.596 -704.661 2.212 0.143 

C1, C2, C3, C4, SA, SR, SL, EL, LA, LO 0.599 -704.079 2.794 0.107 

C4, SA, SR, SL, EL, LA, LO 0.575 -697.607 9.266 0.004 

C1, C4, SA, SR, SL, EL, LA, LO 0.576 -695.929 10.944 0.002 

C2, C4, SA, SR, SL, EL, LA, LO 0.575 -695.475 11.398 0.001 

C3, C4, SA, SL, EL, LA, LO 0.568 -694.051 12.822 < 0.001 

C1, C2, C4, SA, SR, SL, EL, LA, LO 0.576 -693.942 12.931 < 0.001 

C2, C3, C4, SA, SL, EL, LA, LO 0.571 -693.545 13.328 < 0.001 
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Table S14. 

Multimodel averaged parameter estimates of the analyses conducted with the 

multifunctionality index (M) as dependent variable and all possible combinations of the 

independent variables used. The results shown are the parameter estimates averaged 

across 255 models using Akaike weights (130) and ordinary least squares regression. 

STE = Standardized coefficient, SE = Standard error, and CI = confidence interval. Rest 

of legend as in table S2. 

 

Variable Coefficient STE SE t 95% Lower CI 95% Upper CI 

C1 -0.059 -0.091 0.021 -2.865 -0.1 -0.019 

C2 -0.045 -0.068 0.018 -2.482 -0.08 -0.009 

C3 0.057 0.086 0.02 2.882 0.018 0.095 

C4 -0.235 -0.358 0.037 -6.409 -0.306 -0.163 

SA -0.017 -0.461 0.002 -8.319 -0.021 -0.013 

SR 0.112 0.191 0.032 3.525 0.05 0.175 

SL 0.116 0.224 0.032 3.593 0.053 0.18 

EL -0.014 -0.282 0.004 -3.719 -0.021 -0.007 
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Table S15. 

Variance inflation factors of the different predictors included in the best (B) and most 

parsimonious (MP) ordinary least squares regression models of the multifunctionality 

index (M), and carbon, nitrogen and phosphorus cycling indices. See Table 1 in the main 

text and tables S4, S5 and S6 for additional details on these models. Rest of legend as in 

table S2. 

 

Variable M Carbon cycling Nitrogen cycling Phosphorus cycling 

B MP B* B MP B* 

C1 1.514 - - 1.484 - - 

C2 - - - - - 2.423 

C3 1.514 - 1.515 - - - 

C4 1.399 1.361 1.373 1.382 1.361 1.381 

SA 1.446 1.325 1.400 1.388 1.325 1.241 

SR 1.333 1.101 1.752 1.124 1.101 - 

SL 1.865 1.677 1.752 1.765 1.677 - 

EL 1.633 1.583 1.592 1.629 1.583 3.452 

LA 1.757 1.291 1.362 1.634 1.291 1.327 

LO 1.672 1.484 1.562 1.568 1.484 1.847 

* The best model is also the most parsimonious in this case. 
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Database S1 

1215442_DatabaseS1.xls: Data used in the primary analyses of this article. The data 

appear in the Data spreadsheet; the description and units of each variable appear in the 

Metadata spreadsheet. 

 

Map S1  

1215442_mapS1.kml: Interactive map showing the location of all the 224 study sites. 

Each site is represented by a red icon and a number, corresponding with the number 

given in Database S1. The following information of every study site appears after 

clicking on each icon: name, vegetation type, soil type (38), soil texture (USDA 

classification, obtained from http://soils.usda.gov/technical/aids/investigations/texture/), 

slope, annual mean precipitation, annual mean temperature, species richness, 

multifunctionality index, carbon cycling index, nitrogen cycling index, and phosphorus 

cycling index. The free software Google Earth (http://www.google.com/earth/index.html) 

is needed to view the file.  
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